Wind tunnel experiments were performed to quantify the coupling mechanisms between incoming wind flows, power output fluctuations, and unsteady tower aerodynamic loads of a model wind turbine under periodically oscillating wind environments across various yaw misalignment angles. A high-resolution load cell and a data logger at high temporal resolution were applied to quantify the aerodynamic loads and power output, and time-resolved particle image velocimetry system was used to characterize incoming and wake flow statistics. Results showed that due to the inertia of the turbine rotor, the time series of power output exhibits a distinctive phase lag compared to the incoming periodically oscillating wind flow, whereas the phase lag between unsteady aerodynamic loads and incoming winds was negligible. Reduced-order models based on the coupling between turbine properties and incoming periodic flow characteristics were derived to predict the fluctuation intensity of turbine power output and the associated phase lag, which exhibited reasonable agreement with experiments. Flow statistics demonstrated that under periodically oscillating wind environments, the growth of yaw misalignment could effectively mitigate the overall flow fluctuation in the wake region and significantly enhance the stream-wise wake velocity cross correlation intensities downstream of the turbine hub location.
more »
« less
On Wind Turbine Loads During Thunderstorm Downbursts in Contrasting Atmospheric Stability Regimes
Severe winds produced by thunderstorm downbursts pose a serious risk to the structural integrity of wind turbines. However, guidelines for wind turbine design (such as the International Electrotechnical Commission Standard, IEC 61400-1) do not describe the key physical characteristics of such events realistically. In this study, a large-eddy simulation model is employed to generate several idealized downburst events during contrasting atmospheric stability conditions that range from convective through neutral to stable. Wind and turbulence fields generated from this dataset are then used as inflow for a 5-MW land-based wind turbine model; associated turbine loads are estimated and compared for the different inflow conditions. We first discuss time-varying characteristics of the turbine-scale flow fields during the downbursts; next, we investigate the relationship between the velocity time series and turbine loads as well as the influence and effectiveness of turbine control systems (for blade pitch and nacelle yaw). Finally, a statistical analysis is conducted to assess the distinct influences of the contrasting stability regimes on extreme and fatigue loads on the wind turbine.
more »
« less
- Award ID(s):
- 1336760
- PAR ID:
- 10122246
- Date Published:
- Journal Name:
- Energies
- Volume:
- 12
- Issue:
- 14
- ISSN:
- 1996-1073
- Page Range / eLocation ID:
- 2773
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract In this study, systematically designed wind tunnel experiments were conducted to characterize the aerodynamic performance of a DU91-W2-250 airfoil with a riblet film. To quantify the impact of the riblet film on wind turbine performance, experimental results were used as input data for numerical simulations. Large-eddy simulations were conducted for the smooth and modified airfoils under uniform and turbulent inflow conditions. For the turbulent inflow simulations, staggered cubes were introduced upstream of the wind turbine to generate velocity fluctuations in the flow. Results from the numerical simulations show that improvements in the aerodynamic performance of the airfoil with riblets enhance the aerodynamic torque that drives the wind turbine, thereby increasing the power output. The improvement in the power coefficient with the use of the riblet film is higher for turbulent incoming wind compared to uniform flow conditions.more » « less
-
null (Ed.)Wind turbine wakes are responsible for power losses and added fatigue loads of wind turbines. Providing capabilities to predict accurately wind-turbine wakes for different atmospheric conditions and turbine settings with low computational requirements is crucial for the optimization of wind-farm layout, and for improving wind-turbine controls aiming to increase annual energy production (AEP) and reduce the levelized cost of energy (LCOE) for wind power plants. In this work, wake measurements collected with a scanning Doppler wind Li- DAR for broad ranges of the atmospheric static stability regime and incoming wind speed are processed through K-means clustering. For computational feasibility, the cluster analysis is performed on a low-dimensional embedding of the collected data, which is obtained through proper orthogonal decomposition (POD). After data compression, we perform K-means of the POD modes to identify cluster centers and corresponding members from the LiDAR data. The different cluster centers allow us to visualize wake variability over ranges of atmospheric, wind, and turbine parameters. The results show that accurate mapping of the wake variability can be achieved with K-means clustering, which represents an initial step to develop data-driven wake models for accurate and low-computational-cost simulations of wind farms.more » « less
-
Next-generation models of wind farm flows are increasingly needed to assist the design, operation, and performance diagnostic of modern wind power plants. Accuracy in the descriptions of the wind farm aerodynamics, including the effects of atmospheric stability, coalescing wakes, and the pressure field induced by the turbine rotors are necessary attributes for such tools as well as low computational costs. The Pseudo-2D RANS model is formulated to provide an efficient solution of the Navier–Stokes equations governing wind-farm flows installed in flat terrain and offshore. The turbulence closure and actuator disk model are calibrated based on wind light detection and ranging measurements of wind turbine wakes collected under different operative and atmospheric conditions. A shallow-water formulation is implemented to achieve a converged solution for the velocity and pressure fields across a farm with computational costs comparable to those of mid-fidelity engineering wake models. The theoretical foundations and numerical scheme of the Pseudo-2D RANS model are provided, together with a detailed description of the verification and validation processes. The model is assessed against a large dataset of power production for an onshore wind farm located in North Texas showing a normalized mean absolute error of 5.6% on the 10-min-averaged active power and 3% on the clustered wind farm efficiency, which represent 8% and 24%, respectively, improvements with respect to the best-performing engineering wake model tested in this work.more » « less
-
null (Ed.)Abstract. Engineering wake models provide the invaluable advantage to predict wind turbine wakes, power capture, and, in turn, annual energy production for an entire wind farm with very low computational costs compared to higher-fidelity numerical tools. However, wake and power predictions obtained with engineering wake models can be insufficiently accurate for wind farm optimization problems due to the ad hoc tuning of the model parameters, which are typically strongly dependent on the characteristics of the site and power plant under investigation. In this paper, lidar measurements collected for individual turbine wakes evolving over a flat terrain are leveraged to perform optimal tuning of the parameters of four widely used engineering wake models. The average wake velocity fields, used as a reference for the optimization problem, are obtained through a cluster analysis of lidar measurements performed under a broad range of turbine operative conditions, namely rotor thrust coefficients, and incoming wind characteristics, namely turbulence intensity at hub height. The sensitivity analysis of the optimally tuned model parameters and the respective physical interpretation are presented. The performance of the optimally tuned engineering wake models is discussed, while the results suggest that the optimally tuned Bastankhah and Ainslie wake models provide very good predictions of wind turbine wakes. Specifically, the Bastankhah wake model should be tuned only for the far-wake region, namely where the wake velocity field can be well approximated with a Gaussian profile in the radial direction. In contrast, the Ainslie model provides the advantage of using as input an arbitrary near-wake velocity profile, which can be obtained through other wake models, higher-fidelity tools, or experimental data. The good prediction capabilities of the Ainslie model indicate that the mixing-length model is a simple yet efficient turbulence closure to capture effects of incoming wind and wake-generated turbulence on the wake downstream evolution and predictions of turbine power yield.more » « less
An official website of the United States government

