Reionization leads to large spatial fluctuations in the intergalactic temperature that can persist well after its completion. We study the imprints of such fluctuations on the $z$ ∼ 5 Ly α forest flux power spectrum using a set of radiation-hydrodynamic simulations that model different reionization scenarios. We find that large-scale coherent temperature fluctuations bring ${\sim}20\text{--}60{{\ \rm per\ cent}}$ extra power at k ∼ 0.002 s km−1, with the largest enhancements in the models where reionization is extended or ends the latest. On smaller scales (k ≳ 0.1 s km−1), we find that temperature fluctuations suppress power by ${\lesssim}10{{\ \rm per\ cent}}$. We find that the shape of the power spectrum is mostly sensitive to the reionization mid-point rather than temperature fluctuations from reionization’s patchiness. However, for all of our models with reionization mid-points of $z$ ≤ 8 ($z$ ≤ 12), the shape differences are ${\lesssim}20{{\ \rm per\ cent}}$ (${\lesssim}40{{\ \rm per\ cent}}$) because of a surprisingly well-matched cancellation between thermal broadening and pressure smoothing that occurs for realistic thermal histories. We also consider fluctuations in the ultraviolet background, finding their impact on the power spectrum to be much smaller than temperature fluctuations at k ≳ 0.01 s km−1. Furthermore, we compare our models to power spectrum measurements, finding that none of our models with reionization mid-points of $z$ < 8 is strongly preferred over another and that all of our models with mid-points of $z$ ≥ 8 are excluded at 2.5σ. Future measurements may be able to distinguish between viable reionization models if they can be performed at lower k or, alternatively, if the error bars on the high-k power can be reduced by a factor of 1.5.
more » « less- Award ID(s):
- 1817256
- PAR ID:
- 10122684
- Publisher / Repository:
- Oxford University Press
- Date Published:
- Journal Name:
- Monthly Notices of the Royal Astronomical Society
- Volume:
- 490
- Issue:
- 3
- ISSN:
- 0035-8711
- Page Range / eLocation ID:
- p. 3177-3195
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
null (Ed.)ABSTRACT Using a set of high resolution simulations, we quantify the effect of species-specific initial transfer functions on probes of the intergalactic medium (IGM) via the Lyman-α forest. We focus on redshifts 2–6, after H i reionization. We explore the effect of these initial conditions on measures of the thermal state of the low density IGM: the curvature, Doppler width cutoff, and Doppler width distribution. We also examine the matter and flux power spectrum, and potential consequences for constraints on warm dark matter models. We find that the curvature statistic is at most affected at the $\approx 2{{\ \rm per\ cent}}$ level at z = 6. The Doppler width cutoff parameters are affected by $\approx 5{{\ \rm per\ cent}}$ for the intercept, and $\approx 8{{\ \rm per\ cent}}$ for the fit slope, though this is subdominant to sample variation. The Doppler width distribution shows a $\approx 30{{\ \rm per\ cent}}$ effect at z = 3, however the distribution is not fully converged with simulation box size and resolution. The flux power spectrum is at most affected by $\approx 5{{\ \rm per\ cent}}$ at high redshift and small scales. We discuss numerical convergence with simulation parameters.more » « less
-
ABSTRACT Feedback from active galactic nuclei and stellar processes changes the matter distribution on small scales, leading to significant systematic uncertainty in weak lensing constraints on cosmology. We investigate how the observable properties of group-scale haloes can constrain feedback’s impact on the matter distribution using Cosmology and Astrophysics with MachinE Learning Simulations (CAMELS). Extending the results of previous work to smaller halo masses and higher wavenumber, k, we find that the baryon fraction in haloes contains significant information about the impact of feedback on the matter power spectrum. We explore how the thermal Sunyaev Zel’dovich (tSZ) signal from group-scale haloes contains similar information. Using recent Dark Energy Survey weak lensing and Atacama Cosmology Telescope tSZ cross-correlation measurements and models trained on CAMELS, we obtain 10 per cent constraints on feedback effects on the power spectrum at $k \sim 5\, h\, {\rm Mpc}^{-1}$. We show that with future surveys, it will be possible to constrain baryonic effects on the power spectrum to $\mathcal {O}(\lt 1~{{\ \rm per\ cent}})$ at $k = 1\, h\, {\rm Mpc}^{-1}$ and $\mathcal {O}(3~{{\ \rm per\ cent}})$ at $k = 5\, h\, {\rm Mpc}^{-1}$ using the methods that we introduce here. Finally, we investigate the impact of feedback on the matter bispectrum, finding that tSZ observables are highly informative in this case.
-
ABSTRACT The shape of the low-mass (faint) end of the galaxy stellar mass function (SMF) or ultraviolet luminosity function (UVLF) at $z \gtrsim 6$ is an open question for understanding which galaxies primarily drove cosmic reionization. Resolved photometry of Local Group low-mass galaxies allows us to reconstruct their star formation histories, stellar masses, and UV luminosities at early times, and this fossil record provides a powerful ‘near-far’ technique for studying the reionization-era SMF/UVLF, probing orders of magnitude lower in mass than direct HST/JWST observations. Using 882 low-mass ($M_{\rm star}\lesssim 10^{9}\, \rm {M_\odot }$) galaxies across 11 Milky Way (MW)- and Local Group-analogue environments from the FIRE-2 cosmological baryonic zoom-in simulations, we characterize their progenitors at $z=6\!-\!9$, the mergers/disruption of those progenitors over time, and how well their present-day fossil record traces the high-redshift SMF. A present-day galaxy with $M_{\rm star}\sim 10^5\, \rm {M_\odot }$ ($\sim 10^9\, \rm {M_\odot }$) had $\approx 1$ ($\approx 30$) progenitors at $z\approx 7$, and its main progenitor comprised $\approx 100~{{\ \rm per\ cent}}$ ($\approx 10~{{\ \rm per\ cent}}$) of the total stellar mass of all its progenitors at $z\approx 7$. We show that although only $\sim 15~{{\ \rm per\ cent}}$ of the early population of low-mass galaxies survives to present day, the fossil record of surviving Local Group galaxies accurately traces the low-mass slope of the SMF at $z \sim 6 \!-\! 9$. We find no obvious mass dependence to the mergers and accretion, and show that applying this reconstruction technique to just low-mass galaxies at $z = 0$ and not the MW/M31 hosts correctly recovers the slope of the SMF down to $M_{\rm star} \sim 10^{4.5}\, \rm {{\rm M}_{\odot }}$ at $z \gtrsim 6$. Thus, we validate the ‘near-far’ approach as an unbiased tool for probing low-mass reionization-era galaxies.
-
ABSTRACT Given the sensitivity of the resonant Lyman $\alpha$ (Ly $\alpha $) transition to absorption by neutral hydrogen, observations of Ly $\alpha$ emitting galaxies (LAEs) have been widely used to probe the ionizing capabilities of reionization-era galaxies and their impact on the intergalactic medium (IGM). However, prior to JWST our understanding of the contribution of fainter sources and of ionized ‘bubbles’ at earlier stages of reionization remained uncertain. Here, we present the characterization of three exceptionally distant LAEs at $z \gt 8$, newly discovered by JWST/Near-Infrared Spectrograph in the JADES survey. These three similarly bright ($M_\text{UV} \approx -20 \, \mathrm{mag}$) LAEs exhibit small Ly $\alpha$ velocity offsets from the systemic redshift, $\Delta v_\rm{{Ly\alpha }} \lesssim 200 \, \mathrm{km \, s^{-1}}$, yet span a range of Ly $\alpha$ equivalent widths (15, 31, and $132 \, \mathring{\rm A}$). The former two show moderate Ly $\alpha$ escape fractions ($f_\rm{esc, {Ly\alpha }} \approx 10~{{\rm per\,cent}}$), whereas Ly $\alpha$ escapes remarkably efficiently from the third ($f_\rm{esc, {Ly\alpha }} \approx 72~{{\rm per\,cent}}$), which moreover is very compact (half-light radius of $90 \pm 10 \, \mathrm{pc}$). We find these LAEs are low-mass galaxies dominated by very recent, vigorous bursts of star formation accompanied by strong nebular emission from metal-poor gas. We infer the two LAEs with modest $f_\rm{esc, {Ly\alpha }}$, one of which reveals evidence for ionization by an active galactic nucleus, may have reasonably produced small ionized bubbles preventing complete IGM absorption of Ly $\alpha$. The third, however, requires a $\sim \!3 \, \text{physical Mpc}$ bubble, indicating faint galaxies have contributed significantly. The most distant LAEs thus continue to be powerful observational probes into the earlier stages of reionization.
-
ABSTRACT The variety of star formation histories (SFHs) of z ≳ 6 galaxies provides important insights into early star formation, but has been difficult to systematically quantify. Some observations suggest that many z ∼ 6–9 galaxies are dominated by ≳200 Myr stellar populations, implying significant star formation at z ≳ 9, while others find that most reionization era galaxies are ≲10 Myr, consistent with little z ≳ 9 star formation. Here, we quantify the distribution of ages of UV-bright ($-22.5\lesssim M_{\rm \small UV}\lesssim -21$) galaxies colour-selected to lie at z ≃ 6.6–6.9, an ideal redshift range to systematically study the SFHs of reionization era galaxies with ground-based observatories and Spitzer. We infer galaxy properties with two SED modelling codes and compare results, finding that stellar masses are largely insensitive to the model, but the inferred ages can vary by an order of magnitude. We infer a distribution of ages assuming a simple, parametric SFH model, finding a median age of ∼30–70 Myr depending on SED model. We quantify the fractions of ≤10 and ≥250 Myr galaxies, finding that these systems comprise ∼15–30 per cent and ∼20–25 per cent of the population, respectively. With a flexible SFH model, the shapes of the SFHs are consistent with those implied by the simple model (e.g. young galaxies have rapidly rising SFHs). However, stellar masses can differ significantly, with those of young systems sometimes being more than an order of magnitude larger with the flexible SFH. We quantify the implications of these results for z ≳ 9 stellar mass assembly and discuss improvements expected from JWST.