skip to main content

Title: Imprints of temperature fluctuations on the z ∼ 5 Lyman-α forest: a view from radiation-hydrodynamic simulations of reionization

Reionization leads to large spatial fluctuations in the intergalactic temperature that can persist well after its completion. We study the imprints of such fluctuations on the $z$ ∼ 5 Ly α forest flux power spectrum using a set of radiation-hydrodynamic simulations that model different reionization scenarios. We find that large-scale coherent temperature fluctuations bring ${\sim}20\text{--}60{{\ \rm per\ cent}}$ extra power at k ∼ 0.002 s km−1, with the largest enhancements in the models where reionization is extended or ends the latest. On smaller scales (k ≳ 0.1 s km−1), we find that temperature fluctuations suppress power by ${\lesssim}10{{\ \rm per\ cent}}$. We find that the shape of the power spectrum is mostly sensitive to the reionization mid-point rather than temperature fluctuations from reionization’s patchiness. However, for all of our models with reionization mid-points of $z$ ≤ 8 ($z$ ≤ 12), the shape differences are ${\lesssim}20{{\ \rm per\ cent}}$ (${\lesssim}40{{\ \rm per\ cent}}$) because of a surprisingly well-matched cancellation between thermal broadening and pressure smoothing that occurs for realistic thermal histories. We also consider fluctuations in the ultraviolet background, finding their impact on the power spectrum to be much smaller than temperature fluctuations at k ≳ 0.01 s km−1. Furthermore, we compare our models to power spectrum more » measurements, finding that none of our models with reionization mid-points of $z$ < 8 is strongly preferred over another and that all of our models with mid-points of $z$ ≥ 8 are excluded at 2.5σ. Future measurements may be able to distinguish between viable reionization models if they can be performed at lower k or, alternatively, if the error bars on the high-k power can be reduced by a factor of 1.5.

« less
 ;  ;  ;  ;  ;  ;  ;  
Award ID(s):
Publication Date:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Page Range or eLocation-ID:
p. 3177-3195
Oxford University Press
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT Using a set of high resolution simulations, we quantify the effect of species-specific initial transfer functions on probes of the intergalactic medium (IGM) via the Lyman-α forest. We focus on redshifts 2–6, after H i reionization. We explore the effect of these initial conditions on measures of the thermal state of the low density IGM: the curvature, Doppler width cutoff, and Doppler width distribution. We also examine the matter and flux power spectrum, and potential consequences for constraints on warm dark matter models. We find that the curvature statistic is at most affected at the $\approx 2{{\ \rm per\ cent}}$more »level at z = 6. The Doppler width cutoff parameters are affected by $\approx 5{{\ \rm per\ cent}}$ for the intercept, and $\approx 8{{\ \rm per\ cent}}$ for the fit slope, though this is subdominant to sample variation. The Doppler width distribution shows a $\approx 30{{\ \rm per\ cent}}$ effect at z = 3, however the distribution is not fully converged with simulation box size and resolution. The flux power spectrum is at most affected by $\approx 5{{\ \rm per\ cent}}$ at high redshift and small scales. We discuss numerical convergence with simulation parameters.« less
  2. Abstract Recently, the Hydrogen Epoch of Reionization Array (HERA) has produced the experiment’s first upper limits on the power spectrum of 21 cm fluctuations at z ∼ 8 and 10. Here, we use several independent theoretical models to infer constraints on the intergalactic medium (IGM) and galaxies during the epoch of reionization from these limits. We find that the IGM must have been heated above the adiabatic-cooling threshold by z ∼ 8, independent of uncertainties about IGM ionization and the radio background. Combining HERA limits with complementary observations constrains the spin temperature of the z ∼ 8 neutral IGM tomore »27 K 〈 T ¯ S 〉 630 K (2.3 K 〈 T ¯ S 〉 640 K) at 68% (95%) confidence. They therefore also place a lower bound on X-ray heating, a previously unconstrained aspects of early galaxies. For example, if the cosmic microwave background dominates the z ∼ 8 radio background, the new HERA limits imply that the first galaxies produced X-rays more efficiently than local ones. The z ∼ 10 limits require even earlier heating if dark-matter interactions cool the hydrogen gas. If an extra radio background is produced by galaxies, we rule out (at 95% confidence) the combination of high radio and low X-ray luminosities of L r , ν /SFR > 4 × 10 24 W Hz −1 M ⊙ − 1 yr and L X /SFR < 7.6 × 10 39 erg s −1 M ⊙ − 1 yr. The new HERA upper limits neither support nor disfavor a cosmological interpretation of the recent Experiment to Detect the Global EOR Signature (EDGES) measurement. The framework described here provides a foundation for the interpretation of future HERA results.« less
  3. ABSTRACT We compare a sample of five high-resolution, high S/N  Ly α forest spectra of bright 6 < z < ∼6.5 QSOs aimed at spectrally resolving the last remaining transmission spikes at z > 5 with those obtained from mock absorption spectra from the Sherwoodand Sherwood–Relics simulation suites of hydrodynamical simulations of the intergalactic medium (IGM). We use a profile-fitting procedure for the inverted transmitted flux, 1 − F, similar to the widely used Voigt profile fitting of the transmitted flux F at lower redshifts, to characterize the transmission spikes that probe predominately underdense regions of the IGM. We are ablemore »to reproduce the width and height distributions of the transmission spikes, both with optically thin simulations of the post-reionization Universe using a homogeneous UV background and full radiative transfer simulations of a late reionization model. We find that the width of the fitted components of the simulated transmission spikes is very sensitive to the instantaneous temperature of the reionized IGM. The internal structures of the spikes are more prominent in low temperature models of the IGM. The width distribution of the observed transmission spikes, which require high spectral resolution (≤ 8  km s−1) to be resolved, is reproduced for optically thin simulations with a temperature at mean density of T0 = (11 000 ± 1600, 10 500 ± 2100, 12 000 ± 2200) K at z = (5.4, 5.6, 5.8). This is weakly dependent on the slope of the temperature-density relation, which is favoured to be moderately steeper than isothermal. In the inhomogeneous, late reionization, full radiative transfer simulations where islands of neutral hydrogen persist to z ∼ 5.3, the width distribution of the observed transmission spikes is consistent with the range of T0 caused by spatial fluctuations in the temperature–density relation.« less
  4. ABSTRACT A number of independent observations suggest that the intergalactic medium was significantly neutral at z = 7 and that reionization was, perhaps, still in progress at z = 5.7. The narrowband survey, SILVERRUSH, has mapped over 2000 Lyman-α emitters (LAEs) at these redshifts ( G58). Previous analyses have assumed that reionization was over by z = 5.7, but this data may actually sample the final stages of reionization when the last neutral islands were relegated to the cosmic voids. Motivated by these developments, we re-examine LAE void and peak statistics and their ability to constrain reionization. We construct models of the LAEmore »distribution in (1 Gpc h−1)3 volumes, spanning a range of neutral fractions at z = 5.7 and 6.6. Models with a higher neutral fraction show an enhanced probability of finding holes in the LAE distribution. When comparing models at fixed mean surface density, however, LAEs obscured by neutral gas in the voids must be compensated by visible LAEs elsewhere. Hence, in these models, the likelihood of finding an overdense peak is also enhanced in the latter half of reionization. Compared to the widely used angular two-point correlation function (2PCF), we find that the void probability function (VPF) provides a more sensitive test of models during the latter half of reionization. By comparison, at neutral fractions $\sim 50{{\ \rm per\ cent}}$, the VPF and a simple peak thresholding statistic are both similar to the 2PCF in constraining power. Lastly, we find that the cosmic variance and large-scale asymmetries observed in the SILVERRUSH fields are consistent with large-scale structure in a ΛCDM universe.« less
  5. Abstract We explore how the assumption of ionization equilibrium modulates the modeled intergalactic medium at the end of the hydrogen epoch of reionization using the cosmological radiation hydrodynamic Technicolor Dawn simulation. In neutral and partially ionized regions where the metagalactic ultraviolet background is weak, the ionization timescale t ion ≡ Γ −1 exceeds the Hubble time. Assuming photoionization equilibrium in such regions artificially boosts the ionization rate, accelerating reionization. By contrast, the recombination time t rec < t ion in photoionized regions, with the result that assuming photoionization equilibrium artificially increases the neutral hydrogen fraction. Using snapshots in the rangemore »8 ≥ z ≥ 5, we compare the predicted Ly α forest (LAF) flux power spectrum with and without the assumption of ionization equilibrium. Small scales ( k > 0.1 rad s km −1 ) exhibit reduced power from 7 ≤ z ≤ 5.5 in the ionization equilibrium case, while larger scales are unaffected. This occurs for the same reasons: ionization equilibrium artificially suppresses the neutral fraction in self-shielded gas and boosts ionizations in voids, suppressing small-scale fluctuations in the ionization field. When the volume-averaged neutral fraction drops below 10 −4 , the signature of nonequilibrium ionizations on the LAF disappears. Comparing with recent observations indicates that these nonequilibrium effects are not yet observable in the LAF flux power spectrum.« less