skip to main content


Title: Prediction of H α and [O iii] emission line galaxy number counts for future galaxy redshift surveys
ABSTRACT

We perform a simulation with Galacticus, a semi-analytical galaxy formation model, to predict the number counts of H α and [O iii] emitting galaxies. With a state-of-the-art N-body simulation, UNIT, we first calibrate Galacticus with the current observation of H α luminosity function. The resulting model coupled with a dust attenuation model, can reproduce the current observations, including the H α luminosity function from HiZELS and number density from WISP. We extrapolate the model prediction to higher redshift and the result is found to be consistent with previous investigations. We then use the same galaxy formation model to predict the number counts for [O iii] emitting galaxies. The result provides further validation of our galaxy formation model and dust model. We present number counts of H α and [O iii] emission line galaxies for three different line flux limits: 5 × 10−17erg s−1 cm−2, 1 × 10−16 erg s−1 cm−2 (6.5σ nominal depth for WFIRST GRS), and 2 × 10−16 erg s−1 cm−2 (3.5σ depth of Euclid GRS). At redshift 2 < z < 3, our model predicts that WFIRST can observe hundreds of [O iii] emission line galaxies per square degree with a line flux limit of 1 × 10−16 erg s−1 cm−2. This will provide accurate measurement of large-scale structure to probe dark energy over a huge cosmic volume to an unprecedented high redshift. Finally, we compare the flux ratio of H α/[O iii] within the redshift range of 0 < z < 3. Our results show the known trend of increasing H α/[O iii] flux ratio with H α flux at low redshift, which becomes a weaker trend at higher redshifts.

 
more » « less
NSF-PAR ID:
10122788
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
490
Issue:
3
ISSN:
0035-8711
Page Range / eLocation ID:
p. 3667-3678
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Context. Outflows from low-mass star-forming galaxies are a fundamental ingredient for models of galaxy evolution and cosmology. Despite seemingly favourable conditions for outflow formation in compact starbursting galaxies, convincing observational evidence for kiloparsec-scale outflows in such systems is scarce. Aims. The onset of kiloparsec-scale ionised filaments in the halo of the metal-poor compact dwarf SBS 0335−052E was previously not linked to an outflow. In this paper we investigate whether these filaments provide evidence for an outflow. Methods. We obtained new VLT/MUSE WFM and deep NRAO/VLA B-configuration 21 cm data of the galaxy. The MUSE data provide morphology, kinematics, and emission line ratios of H β /H α and [O  III ] λ 5007/H α of the low surface-brightness filaments, while the VLA data deliver morphology and kinematics of the neutral gas in and around the system. Both datasets are used in concert for comparisons between the ionised and the neutral phase. Results. We report the prolongation of a lacy filamentary ionised structure up to a projected distance of 16 kpc at SB H α  = 1.5 × 10 −18 erg s cm −2 arcsec −2 . The filaments exhibit unusual low H α /H β  ≈ 2.4 and low [O  III ]/H α  ∼ 0.4 − 0.6 typical of diffuse ionised gas. They are spectrally narrow (∼20 km s −1 ) and exhibit no velocity sub-structure. The filaments extend outwards from the elongated H  I halo. On small scales, the N HI peak is offset from the main star-forming sites. The morphology and kinematics of H  I and H  II reveal how star-formation-driven feedback interacts differently with the ionised and the neutral phase. Conclusions. We reason that the filaments are a large-scale manifestation of star-formation- driven feedback, namely limb-brightened edges of a giant outflow cone that protrudes through the halo of this gas-rich system. A simple toy model of such a conical structure is found to be commensurable with the observations. 
    more » « less
  2. Abstract

    We present Keck Cosmic Web Imager Lyαintegral field spectroscopy of the fields surrounding 14 damped Lyαabsorbers (DLAs) atz≈ 2. Of these 14 DLAs, nine have high metallicities ([M/H] > − 0.3), and four of those nine feature a CO-emitting galaxy at an impact parameter ≲30 kpc. Our search reaches median Lyαline flux sensitivities of ∼2 × 10−17erg s−1cm−2over apertures of ∼6 kpc and out to impact parameters of ∼50 kpc. We recover the Lyαflux of three known Lyα-emitting Hi-selected galaxies in our sample. In addition, we find two Lyαemitters at impact parameters of ≈50–70 kpc from the high-metallicity DLA atz≈ 1.96 toward QSO B0551-366. This field also contains a massive CO-emitting galaxy at an impact parameter of ≈15 kpc. Apart from the field with QSO B0551-366, we do not detect significant Lyαemission in any of the remaining eight high-metallicity DLA fields. Considering the depth of our observations and our ability to recover previously known Lyαemitters, we conclude that Hi-selected galaxies associated with high-metallicity DLAs atz≈ 2 are dusty and therefore might feature low Lyαescape fractions. Our results indicate that complementary approaches—using Lyα, CO, Hα, and [Cii] 158μm emission—are necessary to identify the wide range of galaxy types associated withz≈ 2 DLAs.

     
    more » « less
  3. null (Ed.)
    ABSTRACT We present a systematic investigation of physical conditions and elemental abundances in four optically thick Lyman-limit systems (LLSs) at z = 0.36–0.6 discovered within the cosmic ultraviolet baryon survey (CUBS). Because intervening LLSs at z < 1 suppress far-UV (ultraviolet) light from background QSOs, an unbiased search of these absorbers requires a near-UV-selected QSO sample, as achieved by CUBS. CUBS LLSs exhibit multicomponent kinematic structure and a complex mix of multiphase gas, with associated metal transitions from multiple ionization states such as C ii, C iii, N iii, Mg ii, Si ii, Si iii, O ii, O iii, O vi, and Fe ii absorption that span several hundred km s−1 in line-of-sight velocity. Specifically, higher column density components (log N(H i)/cm−2≳ 16) in all four absorbers comprise dynamically cool gas with $\langle T \rangle =(2\pm 1) \times 10^4\,$K and modest non-thermal broadening of $\langle b_\mathrm{nt} \rangle =5\pm 3\,$km s−1. The high quality of the QSO absorption spectra allows us to infer the physical conditions of the gas, using a detailed ionization modelling that takes into account the resolved component structures of H i and metal transitions. The range of inferred gas densities indicates that these absorbers consist of spatially compact clouds with a median line-of-sight thickness of $160^{+140}_{-50}$ pc. While obtaining robust metallicity constraints for the low density, highly ionized phase remains challenging due to the uncertain $N\mathrm{(H\, {\small I})}$, we demonstrate that the cool-phase gas in LLSs has a median metallicity of $\mathrm{[\alpha /H]_{1/2}}=-0.7^{+0.1}_{-0.2}$, with a 16–84 percentile range of [α/H] = (−1.3, −0.1). Furthermore, the wide range of inferred elemental abundance ratios ([C/α], [N/α], and [Fe/α]) indicate a diversity of chemical enrichment histories. Combining the absorption data with deep galaxy survey data characterizing the galaxy environment of these absorbers, we discuss the physical connection between star-forming regions in galaxies and diffuse gas associated with optically thick absorption systems in the z < 1 circumgalactic medium. 
    more » « less
  4. Abstract

    Euclid and the Roman Space Telescope (Roman) will soon use grism spectroscopy to detect millions of galaxies via their Hαand [Oiii]λ5007 emission. To better constrain the expected galaxy counts from these instruments, we use a vetted sample of 4239 emission-line galaxies from the 3D Hubble Space Telescope survey to measure the Hαand [Oiii]λ5007 luminosity functions between 1.16 <z< 1.90; this sample is ∼4 times larger than previous studies at this redshift. We find very good agreement with previous measurements for Hα, but for [Oiii], we predict a higher number of intermediate-luminosity galaxies than from previous works. We find that, for both lines, the characteristic luminosity,*, increases monotonically with redshift, and use the Hαluminosity function to calculate the epoch’s cosmic star formation rate density. We find that Hα-visible galaxies account for ∼81% of the epoch’s total star formation rate, and this value changes very little over the 1.16 <z< 1.56 redshift range. Finally, we derive the surface density of galaxies as a function of limiting flux and find that previous predictions for galaxy counts for the Euclid Wide Survey are unchanged, but there may be more [Oiii] galaxies in the Roman High Latitude Survey than previously estimated.

     
    more » « less
  5. ABSTRACT

    Nearly a decade ago, we began to see indications that reionization-era galaxies power hard radiation fields rarely seen at lower redshift. Most striking were detections of nebular C iv emission in what appeared to be typical low-mass galaxies, requiring an ample supply of 48 eV photons to triply ionize carbon. We have obtained deep JWST/NIRSpec R = 1000 spectroscopy of the two z > 6 C iv-emitting galaxies known prior to JWST. Here, we present a rest-UV to optical spectrum of one of these two systems, the multiply-imaged z = 6.1 lensed galaxy RXCJ2248-ID. NIRCam imaging reveals two compact (<22 pc) clumps separated by 220 pc, with one comprising a dense concentration of massive stars (>10 400 M⊙ yr−1 kpc−2) formed in a recent burst. We stack spectra of 3 images of the galaxy (J = 24.8–25.9), yielding a very deep spectrum providing a high-S/N template of strong emission line sources at z > 6. The spectrum reveals narrow high-ionization lines (He ii, C iv, N iv]) with line ratios consistent with powering by massive stars. The rest-optical spectrum is dominated by very strong emission lines ([O iii] EW = 2800 Å), albeit with weak emission from low-ionization transitions ([O iii]/[O ii] = 184). The electron density is found to be very high (6.4–31.0 × 104 cm−3) based on three UV transitions. The ionized gas is metal poor ($12+\log (\rm O/H)=7.43^{+0.17}_{-0.09}$), yet highly enriched in nitrogen ($\log (\rm N/O)=-0.39^{+0.11}_{-0.10}$). The spectrum appears broadly similar to that of GNz11 at z = 10.6, without showing the same AGN signatures. We suggest that the hard radiation field and rapid nitrogen enrichment may be a short-lived phase that many z > 6 galaxies go through as they undergo strong bursts of star formation. We comment on the potential link of such spectra to globular cluster formation.

     
    more » « less