Euclid and the Roman Space Telescope (Roman) will soon use grism spectroscopy to detect millions of galaxies via their H
We perform a simulation with Galacticus, a semi-analytical galaxy formation model, to predict the number counts of H α and [O iii] emitting galaxies. With a state-of-the-art N-body simulation, UNIT, we first calibrate Galacticus with the current observation of H α luminosity function. The resulting model coupled with a dust attenuation model, can reproduce the current observations, including the H α luminosity function from HiZELS and number density from WISP. We extrapolate the model prediction to higher redshift and the result is found to be consistent with previous investigations. We then use the same galaxy formation model to predict the number counts for [O iii] emitting galaxies. The result provides further validation of our galaxy formation model and dust model. We present number counts of H α and [O iii] emission line galaxies for three different line flux limits: 5 × 10−17erg s−1 cm−2, 1 × 10−16 erg s−1 cm−2 (6.5σ nominal depth for WFIRST GRS), and 2 × 10−16 erg s−1 cm−2 (3.5σ depth of Euclid GRS). At redshift 2 < z < 3, our model predicts that WFIRST can observe hundreds of [O iii] emission line galaxies per square degree with a line flux limit of 1 × 10−16 erg s−1 cm−2. This will provide accurate measurement of large-scale structure to probe dark energy over a huge cosmic volume to an unprecedented high redshift. more »
- Publication Date:
- NSF-PAR ID:
- 10122788
- Journal Name:
- Monthly Notices of the Royal Astronomical Society
- Volume:
- 490
- Issue:
- 3
- Page Range or eLocation-ID:
- p. 3667-3678
- ISSN:
- 0035-8711
- Publisher:
- Oxford University Press
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract α and [Oiii ]λ 5007 emission. To better constrain the expected galaxy counts from these instruments, we use a vetted sample of 4239 emission-line galaxies from the 3D Hubble Space Telescope survey to measure the Hα and [Oiii ]λ 5007 luminosity functions between 1.16 <z < 1.90; this sample is ∼4 times larger than previous studies at this redshift. We find very good agreement with previous measurements for Hα , but for [Oiii ], we predict a higher number of intermediate-luminosity galaxies than from previous works. We find that, for both lines, the characteristic luminosity, , increases monotonically with redshift, and use the Hα luminosity function to calculate the epoch’s cosmic star formation rate density. We find that Hα -visible galaxies account for ∼81% of the epoch’s total star formation rate, and this value changes very little over the 1.16 <z < 1.56 redshift range. Finally, we derive the surface density of galaxies as a function of limiting flux and find that previous predictions for galaxy counts for the Euclid Wide Survey are unchanged, but there may be more [Oiii ] galaxies in the Roman High Latitude Survey than previouslymore » -
Exploiting the sensitivity of the IRAM NOrthern Extended Millimeter Array (NOEMA) and its ability to process large instantaneous bandwidths, we have studied the morphology and other properties of the molecular gas and dust in the star forming galaxy, H-ATLAS J131611.5+281219 (HerBS-89a), at z = 2.95. High angular resolution (0 . ″3) images reveal a partial 1 . ″0 diameter Einstein ring in the dust continuum emission and the molecular emission lines of 12 CO(9−8) and H 2 O(2 02 − 1 11 ). Together with lower angular resolution (0 . ″6) images, we report the detection of a series of molecular lines including the three fundamental transitions of the molecular ion OH + , namely (1 1 − 0 1 ), (1 2 − 0 1 ), and (1 0 − 0 1 ), seen in absorption; the molecular ion CH + (1 − 0) seen in absorption, and tentatively in emission; two transitions of amidogen (NH 2 ), namely (2 02 − 1 11 ) and (2 20 − 2 11 ) seen in emission; and HCN(11 − 10) and/or NH(1 2 − 0 1 ) seen in absorption. The NOEMA data are complemented with Very Large Array data tracing the 12 CO(1 − 0) emission line, which provides a measurement ofmore »
-
ABSTRACT We present predictions for high redshift (z = 2−10) galaxy populations based on the IllustrisTNG simulation suite and a full Monte Carlo dust radiative transfer post-processing. Specifically, we discuss the H α and H β + $[\rm O \,{\small III}]$ luminosity functions up to z = 8. The predicted H β + $[\rm O \,{\small III}]$ luminosity functions are consistent with present observations at z ≲ 3 with ${\lesssim} 0.1\, {\rm dex}$ differences in luminosities. However, the predicted H α luminosity function is ${\sim }0.3\, {\rm dex}$ dimmer than the observed one at z ≃ 2. Furthermore, we explore continuum spectral indices, the Balmer break at 4000 Å; (D4000) and the UV continuum slope β. The median D4000 versus specific star formation rate relation predicted at z = 2 is in agreement with the local calibration despite a different distribution pattern of galaxies in this plane. In addition, we reproduce the observed AUV versus β relation and explore its dependence on galaxy stellar mass, providing an explanation for the observed complexity of this relation. We also find a deficiency in heavily attenuated, UV red galaxies in the simulations. Finally, we provide predictions for the dust attenuation curves of galaxies at z = 2−6 and investigate their dependence on galaxy colours andmore »
-
Abstract The Baldwin, Philips, & Terlevich diagram of [O
iii ]/Hβ versus [Nii ]/Hα (hereafter N2-BPT) has long been used as a tool for classifying galaxies based on the dominant source of ionizing radiation. Recent observations have demonstrated that galaxies atz ∼ 2 reside offset from local galaxies in the N2-BPT space. In this paper, we conduct a series of controlled numerical experiments to understand the potential physical processes driving this offset. We model nebular line emission in a large sample of galaxies, taken from thesimba cosmological hydrodynamic galaxy formation simulation, using thecloudy photoionization code to compute the nebular line luminosities from Hii regions. We find that the observed shift toward higher [Oiii ]/Hβ and [Nii ]/Hα values at high redshift arises from sample selection: when we consider only the most massive galaxiesM *∼ 1010–11M ⊙, the offset naturally appears, due to their high metallicities. We predict that deeper observations that probe lower-mass galaxies will reveal galaxies that lie on a locus comparable toz ∼ 0 observations. Even when accounting for samples-selection effects, we find that there is a subtle mismatch between simulations and observations. To resolve this discrepancy, we investigate the impact of varying ionization parameters, Hii region densities, gas-phase abundance patterns, and increasing radiation field hardness on N2-BPT diagrams. We find that either decreasing themore » -
ABSTRACT We present a systematic investigation of physical conditions and elemental abundances in four optically thick Lyman-limit systems (LLSs) at z = 0.36–0.6 discovered within the cosmic ultraviolet baryon survey (CUBS). Because intervening LLSs at z < 1 suppress far-UV (ultraviolet) light from background QSOs, an unbiased search of these absorbers requires a near-UV-selected QSO sample, as achieved by CUBS. CUBS LLSs exhibit multicomponent kinematic structure and a complex mix of multiphase gas, with associated metal transitions from multiple ionization states such as C ii, C iii, N iii, Mg ii, Si ii, Si iii, O ii, O iii, O vi, and Fe ii absorption that span several hundred km s−1 in line-of-sight velocity. Specifically, higher column density components (log N(H i)/cm−2≳ 16) in all four absorbers comprise dynamically cool gas with $\langle T \rangle =(2\pm 1) \times 10^4\,$K and modest non-thermal broadening of $\langle b_\mathrm{nt} \rangle =5\pm 3\,$km s−1. The high quality of the QSO absorption spectra allows us to infer the physical conditions of the gas, using a detailed ionization modelling that takes into account the resolved component structures of H i and metal transitions. The range of inferred gas densities indicates that these absorbers consist of spatially compact clouds with a median line-of-sight thickness of $160^{+140}_{-50}$ pc. While obtaining robust metallicitymore »