skip to main content


Title: All‐Sky Imaging Observations and Modeling of Bright 630‐nm Airglow Structures Associated With MSTIDs
Abstract

An all‐sky imager at El Leoncito Observatory (−31.8°, 69.3°W, 18.2° magnetic latitude) is used to study 630.0‐nm airglow emissions related to medium‐scale traveling ionospheric disturbances (MSTIDs). On the night of 6 December 2007 an unusual event consisting of bright bands propagating northwestward was observed. Enhancements in total electron content from ground‐based Global Positioning System receivers were observed collocated with the bright airglow bands. A regional Global Positioning System‐derived total electron content map matches the direction of motion, scale size, and location of these bright bands. Model results includingFregion coupling withEregion structures reproduce the characteristics of the bright bands. Specific conditions in theEregion must exist in order to observe these unusual MSTIDs consisting of propagating bright bands only.

 
more » « less
Award ID(s):
1659304
NSF-PAR ID:
10448838
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Space Physics
Volume:
124
Issue:
8
ISSN:
2169-9380
Page Range / eLocation ID:
p. 7332-7340
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    In this study, we report the persistent impacts of the 2011 Tohoku earthquake/tsunami on the ionosphere using the ground‐based Global Navigation Satellite System and FORMOSAT‐3/COSMIC total electron content. Multiple unusual ionospheric phenomena, such as ionospheric irregularities, nighttime medium‐scale traveling ionospheric disturbances (MSTIDs), and planar traveling ionospheric disturbances (TIDs), were observed after the emergence of tsunami‐induced concentric gravity waves. The ionospheric irregularities initially developed over the Hokkaido region following the interference of gravity waves at ~8:45 UT. Remarkably, the Perkins‐type nighttime MSTIDs accompanying the planar TIDs were discernible over Japan following the irregularities. By comparing with the tsunami model simulation and ocean buoy observations, it is determined that these planar TIDs, lasting for about 10 hr, were likely related to tsunami ocean waves reflected by seamounts, ridges, islands, and seafloor topography in the Pacific Ocean. Due to the absence of sporadicElayers, we suggest that the coupling between the tsunami‐generated gravity waves and the Perkins instability plays an essential role in initiating the equinoctial nighttime MSTIDs. The long‐lasting tsunami can continuously impact the ionosphere, affecting the nighttime ionospheric electrodynamics and making the conditions conducive for the development of midlatitude nighttime ionospheric irregularities and instabilities.

     
    more » « less
  2. Abstract

    All‐sky imagers located in Asiago, Italy (45.87oN, 11.53oE; 40.7omagnetic latitude) and Sutherland, South Africa (32.37oS, 20.81oE; −40.7omagnetic latitude) are used to study magnetically conjugate medium scale traveling ionospheric disturbances (MSTIDs). We present initial results from the first year of joint Asiago‐Sutherland data sets from July 2016 to June 2017. The 630.0‐nm airglow perturbations showing different kinds of waves were frequently observed. Some of these wave events resemble MSTIDs propagating south‐westward in Asiago, typical direction observed at other longitude sectors in the northern hemisphere. They are mostly observed as single bands propagating through the field of view of the all‐sky imagers. We select and analyze five cases of magnetically conjugate bands associated with MSTIDs. The bands observed at Sutherland move mainly westward, noticeably different from the north‐west direction of propagation of MSTIDs observed in the southern hemisphere. We compare the MSTIDs propagation speeds and find that three cases show larger values at Sutherland. When we compare the zonal speeds all the cases show larger values at Sutherland. On average, the propagation speed at Sutherland is 20% larger and the zonal speed is ~35% larger. The westward motion at Sutherland is explained by taking onto account how its magnetic declination (~24oW) affects the orientation of the bands. The larger speed at Sutherland is due to the weaker Earth's magnetic field in the southern hemisphere and the particular configuration of the magnetic field lines in this longitude sector.

     
    more » « less
  3. Abstract

    On the dayside of August 25–26, 2018 (main phase, MP of the storm), we unveiled the storm time effects on the latitudinal distribution of ionospheric total electron content (TEC). We used 17 and 19 Global Positioning System receivers in American and Asian‐Australian sectors, respectively. Also, we employed a pair of magnetometers in each sector to unveil storm time effects on verticalE×Bupward directed inferred drift velocity in the F region ionosphere. Also used is NASA Thermosphere Ionosphere Mesosphere Energetics and Dynamics satellite airglow instrument to investigate storm time changes in neutral composition, O/N2ratio. In this investigation, we corrected the latitudinal offset found in the works of Younas et al. (2020,https://doi.org/10.1029/2020JA027981). Interestingly, we observed that a double‐humped increase (DHI) seen at a middle latitude station (MGUE, ∼22°S) after the MP on the dayside in American sector (Younas et al., 2020,https://doi.org/10.1029/2020JA027981) did straddle ∼23.58°N and ∼22°S. On August 25, 2018, storm commencement was evident in Sym‐H (∼−8 nT) around 18:00 UT. It later became intensified (∼−174 nT) on August 26 around 08:00 UT. During storm's MP (after the MP), fountain effect operation was significantly enhanced (inhibited) in Asian‐Australian (American) sector. Middle latitude TEC during MP got reduced in American sector (13:00 LT–15:40 LT) compared to those seen in Asian‐Australian sector (13:00 LT–15:40 LT). The northern equatorial peak (∼25 TECU) seen at IHYO (14:00 LT) after MP in the American sector is higher when compared with that (∼21 TECU) seen at PPPC (11:40 LT) during MP in Asian‐Australian sector.

     
    more » « less
  4. Abstract

    A statistical picture of the occurrence and characteristics of Traveling Ionospheric Disturbances (TIDs) over the Antarctic Peninsula is established using Global Navigation Satellite System Total Electron Content and High Frequency sounding observations. The measured parameters of the majority of the disturbances allow classifying them as medium scale TIDs (MSTIDs). Overall, the observed climatology of ionospheric disturbances in the Antarctic Peninsula region varies significantly with the season and makes it possible to differentiate two major types of the disturbances: winter daytime and summer nighttime, based on their occurrence periods and characteristics. During the Antarctic summer period, the disturbances are present mainly during the nighttime and morning hours, when the background plasma density is at maximum (due to Weddell Sea Anomaly). These disturbances predominantly propagate northwestward and their occurrence probability is well correlated with the sporadic E layer observations, suggesting that these are electrified MSTIDs. During the winter, the TID events are almost exclusively observed during the daytime. The propagation direction of the disturbances during the daytime shows a strong correlation with the background neutral wind direction in the thermosphere. A possible mechanism for this effect is wind filtering of the Atmospheric Gravity Waves originating in the troposphere, which indicates that their source is in the lower atmosphere. The periods of the TIDs also significantly differ between the seasons. Wintertime TIDs have noticeably shorter periods (10–50 min) than those observed during other parts of the year (30–140 min), which also likely reflects the fact that the two types of TIDs are generated by different physical mechanisms.

     
    more » « less
  5. Abstract

    We describe observations of a trend between the level of km‐scale irregularity activity and the amplitudes of medium‐scale traveling ionospheric disturbances (MSTIDs) at mid‐latitudes using data from December 2019 through June 2021. These include measurements of both heigh‐specific and vertically integrated quantities. Region‐specific, bottom‐side measurements were made with the dynasonde system near Wallops Island (WI) and included phase structure function parameters related to km‐scale irregularities as well as height‐specific tilts/density gradients, which are especially sensitive to MSTIDs. A complementary data set was derived from the nearby Deployable Low‐band Ionosphere and Transient Experiment (DLITE) array in southern Maryland. The DLITE array was used to measure the vertically integrated irregularity index,CkL, via scintillometry of bright cosmic radio sources at 35 MHz. Transverse gradients in the line‐of‐sight total electron content (TEC) were also measured with DLITE using apparent shifts in the sources' sky positions. Relatively simple layer‐based models for the vertical distribution of km‐scale irregularities applied to dynasonde‐measured properties yielded results that correlated well with DLITE measurements ofCkL. Similarly, spectral analysis showed that fluctuation amplitudes of vertically integrated bottom‐side density gradients derived from dynasonde data were well correlated with DLITE TEC gradient measurements. A significant trend was found betweenCkLand TEC gradient MSTID amplitudes among DLITE‐based data as well as among the extrapolated dynasonde measurements. Additionally, within the bottom‐side F‐region, irregularity levels were found to be well correlated with fluctuation amplitudes for the tilt as measured with the WI dynasonde.

     
    more » « less