skip to main content


Title: “Beyond Primary Sequence”—Proteomic Data Reveal Complex Toxins in Cnidarian Venoms
Abstract Venomous animals can deploy toxins for both predation and defense. These dual functions of toxins might be expected to promote the evolution of new venoms and alteration of their composition. Cnidarians are the most ancient venomous animals but our present understanding of their venom diversity is compromised by poor taxon sampling. New proteomic data were therefore generated to characterize toxins in venoms of a staurozoan, a hydrozoan, and an anthozoan. We then used a novel clustering approach to compare venom diversity in cnidarians to other venomous animals. Comparison of the presence or absence of 32 toxin protein families indicated venom composition did not vary widely among the 11 cnidarian species studied. Unsupervised clustering of toxin peptide sequences suggested that toxin composition of cnidarian venoms is just as complex as that in many venomous bilaterians, including marine snakes. The adaptive significance of maintaining a complex and relatively invariant venom remains unclear. Future study of cnidarian venom diversity, venom variation with nematocyst types and in different body regions are required to better understand venom evolution.  more » « less
Award ID(s):
1831860
NSF-PAR ID:
10123158
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Integrative and Comparative Biology
Volume:
59
Issue:
4
ISSN:
1540-7063
Page Range / eLocation ID:
777 to 785
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Background The explosive radiation and diversification of the advanced snakes (superfamily Colubroidea) was associated with changes in all aspects of the shared venom system. Morphological changes included the partitioning of the mixed ancestral glands into two discrete glands devoted for production of venom or mucous respectively, as well as changes in the location, size and structural elements of the venom-delivering teeth. Evidence also exists for homology among venom gland toxins expressed across the advanced snakes. However, despite the evolutionary novelty of snake venoms, in-depth toxin molecular evolutionary history reconstructions have been mostly limited to those types present in only two front-fanged snake families, Elapidae and Viperidae. To have a broader understanding of toxins shared among extant snakes, here we first sequenced the transcriptomes of eight taxonomically diverse rear-fanged species and four key viperid species and analysed major toxin types shared across the advanced snakes. Results Transcriptomes were constructed for the following families and species: Colubridae - Helicops leopardinus , Heterodon nasicus , Rhabdophis subminiatus ; Homalopsidae – Homalopsis buccata ; Lamprophiidae - Malpolon monspessulanus , Psammophis schokari , Psammophis subtaeniatus , Rhamphiophis oxyrhynchus ; and Viperidae – Bitis atropos , Pseudocerastes urarachnoides , Tropidolaeumus subannulatus , Vipera transcaucasiana . These sequences were combined with those from available databases of other species in order to facilitate a robust reconstruction of the molecular evolutionary history of the key toxin classes present in the venom of the last common ancestor of the advanced snakes, and thus present across the full diversity of colubroid snake venoms. In addition to differential rates of evolution in toxin classes between the snake lineages, these analyses revealed multiple instances of previously unknown instances of structural and functional convergences. Structural convergences included: the evolution of new cysteines to form heteromeric complexes, such as within kunitz peptides (the beta-bungarotoxin trait evolving on at least two occasions) and within SVMP enzymes (the P-IIId trait evolving on at least three occasions); and the C-terminal tail evolving on two separate occasions within the C-type natriuretic peptides, to create structural and functional analogues of the ANP/BNP tailed condition. Also shown was that the de novo evolution of new post-translationally liberated toxin families within the natriuretic peptide gene propeptide region occurred on at least five occasions, with novel functions ranging from induction of hypotension to post-synaptic neurotoxicity. Functional convergences included the following: multiple occasions of SVMP neofunctionalised in procoagulant venoms into activators of the clotting factors prothrombin and Factor X; multiple instances in procoagulant venoms where kunitz peptides were neofunctionalised into inhibitors of the clot destroying enzyme plasmin, thereby prolonging the half-life of the clots formed by the clotting activating enzymatic toxins; and multiple occasions of kunitz peptides neofunctionalised into neurotoxins acting on presynaptic targets, including twice just within Bungarus venoms. Conclusions We found novel convergences in both structural and functional evolution of snake toxins. These results provide a detailed roadmap for future work to elucidate predator–prey evolutionary arms races, ascertain differential clinical pathologies, as well as documenting rich biodiscovery resources for lead compounds in the drug design and discovery pipeline. 
    more » « less
  2. The sea anemoneNematostella vectensis(Anthozoa, Cnidaria) is a powerful model for characterizing the evolution of genes functioning in venom and nervous systems. Although venom has evolved independently numerous times in animals, the evolutionary origin of many toxins remains unknown. In this work, we pinpoint an ancestral gene giving rise to a new toxin and functionally characterize both genes in the same species. Thus, we report a case of protein recruitment from the cnidarian nervous to venom system. The ShK-like1 peptide has a ShKT cysteine motif, is lethal for fish larvae and packaged into nematocysts, the cnidarian venom-producing stinging capsules. Thus, ShK-like1 is a toxic venom component. Its paralog, ShK-like2, is a neuropeptide localized to neurons and is involved in development. Both peptides exhibit similarities in their functional activities: They provoke contraction inNematostellapolyps and are toxic to fish. Because ShK-like2 but not ShK-like1 is conserved throughout sea anemone phylogeny, we conclude that the two paralogs originated due to aNematostella-specific duplication of a ShK-like2 ancestor, a neuropeptide-encoding gene, followed by diversification and partial functional specialization. ShK-like2 is represented by two gene isoforms controlled by alternative promoters conferring regulatory flexibility throughout development. Additionally, we characterized the expression patterns of four other peptides with structural similarities to studied venom components and revealed their unexpected neuronal localization. Thus, we employed genomics, transcriptomics, and functional approaches to reveal one venom component, five neuropeptides with two different cysteine motifs, and an evolutionary pathway from nervous to venom system in Cnidaria.

     
    more » « less
  3. Understanding the molecular mechanisms that underlie snake venom variability provides important clues for understanding how the biological functions of this powerful toxic arsenal evolve. Here we analyzed in detail individual transcripts and venom protein isoforms produced by five specimens of a venomous snake (Bothrops atrox) from two nearby but genetically distinct populations from the Brazilian Amazon rainforest showing functional similarities in venom properties. Individual variation was observed among the venoms of these specimens, but the overall abundance of each general toxin family was conserved both in transcripts and in venom protein levels. However, when expression of independent paralogues was analyzed, remarkable differences were observed within and among each toxin group both between individuals and between populations. Transcripts for functionally essential venom proteins (“housekeeping” proteins) are highly expressed in all specimens and show similar transcription/translation rates. In contrast, other paralogues show lower expression levels and the toxins they code for vary among different individuals. These results provide support for the idea that that expression and translational differences play a greater role in defining adaptive variation in venom phenotypes than does sequence variation in protein coding genes and that convergent adaptive venom phenotypes can be generated through different molecular mechanisms. 
    more » « less
  4. The same selective forces that give rise to rapid inter- and intraspecific divergence in snake venoms can also favor differences in venoms across life-history stages. Ontogenetic changes in venom composition are well known and widespread in snakes but have not been investigated to the level of unambiguously identifying the specific loci involved. The eastern diamondback rattlesnake was previously shown to undergo an ontogenetic shift in venom composition at sexual maturity, and this shift accounted for more venom variation than geography. To characterize the genetics underlying the ontogenetic venom compositional change inC. adamanteus, we sequenced adult/juvenile pairs of venom-gland transcriptomes from five populations previously shown to have different adult venom compositions. We identified a total of 59 putative toxin transcripts for C. adamanteus, and 12 of these were involved in the ontogenetic change. Three toxins were downregulated, and nine were upregulated in adults relative to juveniles. Adults and juveniles expressed similar total levels of snake-venom metalloproteinases but differed substantially in their featured paralogs, and adults expressed higher levels of Bradykinin-potentiating and C-type natriuretic peptides, nerve growth factor, and specific paralogs of phospholipases A2and snake venom serine proteinases. Juvenile venom was more toxic to mice, indicating that the expression differences resulted in a phenotypically, and therefore potentially ecologically, significant difference in venom function. We also showed that adult and juvenile venom-gland transcriptomes for a species with known ontogenetic venom variation were equally effective at individually providing a full characterization of the venom genes of a species but that any particular individual was likely to lack several toxins in their transcriptome. A full characterization of a species’ venom-gene complement therefore requires sequencing more than one individual, although the ages of the individuals are unimportant.

     
    more » « less
  5. Abstract Background

    Snake venoms are trophic adaptations that represent an ideal model to examine the evolutionary factors that shape polymorphic traits under strong natural selection. Venom compositional variation is substantial within and among venomous snake species. However, the forces shaping this phenotypic complexity, as well as the potential integrated roles of biotic and abiotic factors, have received little attention. Here, we investigate geographic variation in venom composition in a wide-ranging rattlesnake (Crotalus viridis viridis) and contextualize this variation by investigating dietary, phylogenetic, and environmental variables that covary with venom.

    Results

    Using shotgun proteomics, venom biochemical profiling, and lethality assays, we identify 2 distinct divergent phenotypes that characterize major axes of venom variation in this species: a myotoxin-rich phenotype and a snake venom metalloprotease (SVMP)-rich phenotype. We find that dietary availability and temperature-related abiotic factors are correlated with geographic trends in venom composition.

    Conclusions

    Our findings highlight the potential for snake venoms to vary extensively within species, for this variation to be driven by biotic and abiotic factors, and for the importance of integrating biotic and abiotic variation for understanding complex trait evolution. Links between venom variation and variation in biotic and abiotic factors indicate that venom variation likely results from substantial geographic variation in selection regimes that determine the efficacy of venom phenotypes across populations and snake species. Our results highlight the cascading influence of abiotic factors on biotic factors that ultimately shape venom phenotype, providing evidence for a central role of local selection as a key driver of venom variation.

     
    more » « less