This paper describes the interface and testing of an indoor navigation app - ASSIST - that guides blind & visually impaired (BVI) individuals through an indoor environment with high accuracy while augmenting their understanding of the surrounding environment. ASSIST features personalized inter-faces by considering the unique experiences that BVI individuals have in indoor wayfinding and offers multiple levels of multimodal feedback. After an overview of the technical approach and implementation of the first prototype of the ASSIST system, the results of two pilot studies performed with BVI individuals are presented. Our studies show that ASSIST is useful in providing users with navigational guidance, improving their efficiency and (more significantly) their safety and accuracy in wayfinding indoors.
more »
« less
CityGuide: A Seamless Indoor-Outdoor Wayfinding System for People With Vision Impairments
GPS accuracy is poor in indoor environments and around buildings. Thus, reading and following signs still remains the most common mechanism for providing and receiving wayfinding information in such spaces. This puts individuals who are blind or visually impaired (BVI) at a great disadvantage. This work designs, implements, and evaluates a wayfinding system and smartphone application called CityGuide that can be used by BVI individuals to navigate their surroundings beyond what is possible with just a GPS-based system. CityGuide enables an individual to query and get turn-by-turn shortest route directions from an indoor location to an outdoor location. CityGuide leverages recently developed indoor wayfinding solutions in conjunction with GPS signals to provide a seamless indoor-outdoor navigation and wayfinding system that guides a BVI individual to their desired destination through the shortest route. Evaluations of CityGuide with BVI human subjects navigating between an indoor starting point to an outdoor destination within an unfamiliar university campus scenario showed it to be effective in reducing end-to-end navigation times and distances of almost all participants.
more »
« less
- Award ID(s):
- 1737433
- PAR ID:
- 10123204
- Date Published:
- Journal Name:
- The 21st International ACM SIGACCESS Conference on Computers and Accessibility
- Page Range / eLocation ID:
- 542 to 544
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Blind & visually impaired (BVI) individuals and those with Autism Spectrum Disorder (ASD) each face unique challenges in navigating unfamiliar indoor environments. In this paper, we propose an indoor positioning and navigation system that guides a user from point A to point B indoors with high accuracy while augmenting their situational awareness. This system has three major components: location recognition (a hybrid indoor localization app that uses Bluetooth Low Energy beacons and Google Tango to provide high accuracy), object recognition (a body-mounted camera to provide the user momentary situational awareness of objects and people), and semantic recognition (map-based annotations to alert the user of static environmental characteristics). This system also features personalized interfaces built upon the unique experiences that both BVI and ASD individuals have in indoor wayfinding and tailors its multimodal feedback to their needs. Here, the technical approach and implementation of this system are discussed, and the results of human subject tests with both BVI and ASD individuals are presented. In addition, we discuss and show the system’s user-centric interface and present points for future work and expansion.more » « less
-
null (Ed.)This paper describes the interface and testing of an indoor navigation app - ASSIST - that guides blind & visually impaired (BVI) individuals through an indoor environment with high accuracy while augmenting their understanding of the surrounding environment. ASSIST features personalized interfaces by considering the unique experiences that BVI individuals have in indoor wayfinding and offers multiple levels of multimodal feedback. After an overview of the technical approach and implementation of the first prototype of the ASSIST system, the results of two pilot studies performed with BVI individuals are presented – a performance study to collect data on mobility (walking speed, collisions, and navigation errors) while using the app, and a usability study to collect user evaluation data on the perceived helpfulness, safety, ease-of-use, and overall experience while using the app. Our studies show that ASSIST is useful in providing users with navigational guidance, improving their efficiency and (more significantly) their safety and accuracy in wayfinding indoors. Findings and user feed-back from the studies confirm some of the previous results, while also providing some new insights into the creation of such an app, including the use of customized user interfaces and expanding the types of information provided.more » « less
-
This paper presents a brief overview of the various (related) research the author has been involved with in the area of navigation and wayfinding for people with visual impairments. The first major piece of research presented is that of the building and deployment of a beacon-based indoor navigation and wayfinding system called GuideBeacon for people with visual impairments. The second major piece of research presented is a broader community-based effort called CityGuide to enable various location-based services (including navigation and wayfinding) in both indoor and outdoor environments for people with disabilities. The paper concludes by summarizing a specific challenge in the area that warrant future research attention.more » « less
-
Blind & visually impaired individuals often face challenges in wayfinding in unfamiliar environments. Thus, an accessible indoor positioning and navigation system that safely and accurately positions and guides such individuals would be welcome. In indoor positioning, both Bluetooth Low Energy (BLE) beacons and Google Tango have their individual strengths but also have weaknesses that can affect the overall usability of a system that solely relies on either component. We propose a hybrid positioning and navigation system that combines both BLE beacons and Google Tango in order to tap into their strengths while minimizing their individual weaknesses. In this paper, we will discuss the approach and implementation of a BLE- and Tango-based hybrid system. The results of pilot tests on the individual components and a human subject test on the full BLE and hybrid systems are also presented. In addition, we have explored the use of vibrotactile devices to provide additional information to a user about their surroundings.more » « less
An official website of the United States government

