skip to main content


Title: A simplified model for the secular dynamics of eccentric discs and applications to planet–disc interactions
ABSTRACT

We develop a simplified model for studying the long-term evolution of giant planets in protoplanetary discs. The model accounts for the eccentricity evolution of the planets and the dynamics of eccentric discs under the influences of secular planet–disc interactions and internal disc pressure, self-gravity, and viscosity. Adopting the ansatz that the disc precesses coherently with aligned apsides, the eccentricity evolution equations of the planet–disc system reduce to a set of linearized ordinary differential equations, which allows for fast computation of the evolution of planet–disc eccentricities over long time-scales. Applying our model to ‘giant planet + external disc’ systems, we are able to reproduce and explain the secular behaviours found in previously published hydrodynamical simulations. We re-examine the possibility of eccentricity excitation (due to secular resonance) of multiple planets embedded in a dispersing disc, and find that taking into account the dynamics of eccentric discs can significantly affect the evolution of the planets’ eccentricities.

 
more » « less
NSF-PAR ID:
10123298
Author(s) / Creator(s):
 ;  
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
490
Issue:
3
ISSN:
0035-8711
Page Range / eLocation ID:
p. 4353-4365
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    We present a new mechanism of generating large planetary eccentricities. This mechanism applies to planets within the inner cavities of their companion protoplanetary disks. A massive disk with an inner truncation may become eccentric due to nonadiabatic effects associated with gas cooling and can retain its eccentricity in long-lived coherently precessing eccentric modes; as the disk disperses, the inner planet will encounter a secular resonance with the eccentric disk when the planet and the disk have the same apsidal precession rates; the eccentricity of the planet is then excited to a large value as the system goes through the resonance. In this work, we solve the eccentric modes of a model disk for a wide range of masses. We then adopt an approximate secular dynamics model to calculate the long-term evolution of the “planet + dispersing disk” system. The planet attains a large eccentricity (between 0.1 and 0.6) in our calculations even though the disk eccentricity is quite small (≲0.05). This eccentricity excitation can be understood in terms of the mode conversion (“avoided crossing” between two eigenstates) phenomenon associated with the evolution of the “planet + disk” eccentricity eigenstates.

     
    more » « less
  2. ABSTRACT

    We analyse the eccentric response of a low-mass coplanar circumbinary disc to secular tidal forcing by a Keplerian eccentric orbit central binary. The disc acquires a forced eccentricity whose magnitude depends on the properties of the binary and disc. The largest eccentricities occur when there is a global apsidal resonance in the disc. The driving frequency by the binary is its apsidal frequency, which is equal to zero. A global resonance occurs when the disc properties permit the existence of a zero apsidal frequency free eccentric mode. Resonances occur for different free eccentric modes, which differ in the number of radial nodes. For a disc not at resonance, the eccentricity distribution has somewhat similar form to the eccentricity distributions in discs at resonance that have the closest matching disc aspect ratios. For higher disc aspect ratios, the forced eccentricity distribution in a 2D disc is similar to that of the fundamental free mode. The forced eccentricity distribution in a 3D disc is similar to that of higher order free modes, not the fundamental mode, unless the disc is very cool. For parameters close to resonance, large phase shifts occur between the disc and binary eccentricities that are locked in phase. Forced eccentricity may play an important role in the evolution of circumbinary discs and their central binaries.

     
    more » « less
  3. ABSTRACT

    In recent years, a number of eccentric debris belts have been observed in extrasolar systems. The most common explanation for their shape is the presence of a nearby eccentric planetary companion. The gravitational perturbation from such a companion would induce periodic eccentricity variations on the planetesimals in the belt, with a range of precession frequencies. The overall expected shape is an eccentric belt with a finite minimum width. However, several observed eccentric debris discs have been found to exhibit a narrower width than the theoretical expectation. In this paper, we study two mechanisms that can produce this small width: (i) the protoplanetary disc can interact with the planet and/or the planetesimals, slowly driving the eccentricity of the former and damping the eccentricities of the latter; and (ii) the companion planet could have gained its eccentricity stochastically, through planet–planet scatterings. We show that under appropriate conditions, both of these scenarios offer a plausible way to reduce the minimum width of an eccentric belt exterior to a perturbing planet. However, the effects of protoplanetary discs are diminished at large separations (a > 10 au) due to the scarcity of gas and the limited disc lifetime. These findings suggest that one can use the shape and width of debris discs to shed light on the evolution of extrasolar systems, constraining the protoplanetary disc properties and the prevalence of planet–planet scatterings. Further observations of debris-harbouring systems could confirm whether thin debris belts are a common occurrence, or the results of rare initial conditions or evolutionary processes.

     
    more » « less
  4. ABSTRACT

    Stellar-mass binary black holes (BBHs) embedded in active galactic nucleus (AGN) discs are possible progenitors of black hole mergers detected in gravitational waves by LIGO/VIRGO. To better understand the hydrodynamical evolution of BBHs interacting with the disc gas, we perform a suite of high-resolution 2D simulations of binaries in local disc (shearing-box) models, considering various binary mass ratios, eccentricities and background disc properties. We use the γ-law equation of state and adopt a robust post-processing treatment to evaluate the mass accretion rate, torque and energy transfer rate on the binary to determine its long-term orbital evolution. We find that circular comparable-mass binaries contract, with an orbital decay rate of a few times the mass doubling rate. Eccentric binaries always experience eccentricity damping. Prograde binaries with higher eccentricities or smaller mass ratios generally have slower orbital decay rates, with some extreme cases exhibiting orbital expansion. The averaged binary mass accretion rate depends on the physical size of the accretor. The accretion flows are highly variable, and the dominant variability frequency is the apparent binary orbital frequency (in the rotating frame around the central massive BH) for circular binaries but gradually shifts to the radial epicyclic frequency as the binary eccentricity increases. Our findings demonstrate that the dynamics of BBHs embedded in AGN discs is quite different from that of isolated binaries in their own circumbinary discs. Furthermore, our results suggest that the hardening time-scales of the binaries are much shorter than their migration time-scales in the disc, for all reasonable binary and disc parameters.

     
    more » « less
  5. ABSTRACT

    The Milky Way Galaxy hosts a four million solar mass black hole, Sgr A*, that underwent a major accretion episode approximately 3–6 Myr ago. During the episode, hundreds of young massive stars formed in a disc orbiting Sgr A* in the central half parsec. The recent discovery of a hypervelocity star (HVS) S5-HVS1, ejected by Sgr A* five Myr ago with a velocity vector consistent with the disc, suggests that this event also produced binary star disruptions. The initial stellar disc has to be rather eccentric for this to occur. Such eccentric discs can form from the tidal disruptions of molecular clouds. Here, we perform simulations of such disruptions, focusing on gas clouds on rather radial initial orbits. As a result, stars formed in our simulations are on very eccentric orbits ($\bar{e}\sim 0.6$) with a lopsided configuration. For some clouds, counterrotating stars are formed. As in previous work, we find that such discs undergo a secular gravitational instability that leads to a moderate number of particles obtaining eccentricities of 0.99 or greater, sufficient for stellar binary disruption. We also reproduce the mean eccentricity of the young disc in the Galactic Centre, though not the observed surface density profile. We discuss missing physics and observational biases that may explain this discrepancy. We conclude that observed S-stars, HVSs, and disc stars tightly constrain the initial cloud parameters, indicating a cloud mass between a few × 104 and $10^5\, {\rm M}_{\odot }$, and a velocity between ∼40 and 80 km s−1 at 10 pc.

     
    more » « less