skip to main content


Title: A non-derivatized method for simultaneous quantitation of proteinogenic, urea-cycle, and acetylated amino acids by liquid chromatography–high-resolution mass spectrometry
The quantification of amino acids as freely dissolved compounds or from hydrolyzed peptides and proteins is a common endeavor in biomedical and environmental sciences. In order to avoid the drawbacks of derivatization and application challenges of tandem mass spectrometry, we present here a robust 13-min liquid chromatography coupled with a full-scan mass spectrometry method to achieve rapid detection and quantification of 30 amino acids without derivatization. We combined hydrophilic interaction liquid chromatography with heated electrospray ionization and high-resolution mass spectrometry operated with polarity switching to analyze the 20 proteinogenic amino acids, ornithine, citrulline, homoserine, cystine, and six acetylated amino acids. We obtained high mass accuracy and good precision of the targeted amino acids. Limits of detection ranged from 0.017 to 1.3 μM. Noteworthy for environmental samples, we found comparable ionization efficiency and quantitative detection for the majority of the analytes prepared with pure water versus a high-salt solution. We applied the method to profile carbon source-dependent secretions of amino acids by Pseudomonas protegens Pf-5, a well-known plant-beneficial bacterium.  more » « less
Award ID(s):
1653092
NSF-PAR ID:
10123548
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Environmental Chemistry Letters
ISSN:
1610-3653
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Acid-catalyzed multiphase chemistry of isoprene epoxydiols (IEPOX) on sulfate aerosol produces substantial amounts of water-soluble secondary organic aerosol (SOA) constituents, including 2-methyltetrols, methyltetrol sulfates, and oligomers thereof in atmospheric fine particulate matter (PM 2.5 ). These constituents have commonly been measured by gas chromatography interfaced to electron ionization mass spectrometry (GC/EI-MS) with prior derivatization or by reverse-phase liquid chromatography interfaced to electrospray ionization high-resolution mass spectrometry (RPLC/ESI-HR-MS). However, both techniques have limitations in explicitly resolving and quantifying polar SOA constituents due either to thermal degradation or poor separation. With authentic 2-methyltetrol and methyltetrol sulfate standards synthesized in-house, we developed a hydrophilic interaction liquid chromatography (HILIC)/ESI-HR-quadrupole time-of-flight mass spectrometry (QTOFMS) protocol that can chromatographically resolve and accurately measure the major IEPOX-derived SOA constituents in both laboratory-generated SOA and atmospheric PM 2.5 . 2-Methyltetrols were simultaneously resolved along with 4–6 diastereomers of methyltetrol sulfate, allowing efficient quantification of both major classes of SOA constituents by a single non-thermal analytical method. The sum of 2-methyltetrols and methyltetrol sulfates accounted for approximately 92%, 62%, and 21% of the laboratory-generated β-IEPOX aerosol mass, laboratory-generated δ-IEPOX aerosol mass, and organic aerosol mass in the southeastern U.S., respectively, where the mass concentration of methyltetrol sulfates was 171–271% the mass concentration of methyltetrol. Mass concentrations of methyltetrol sulfates were 0.39 and 2.33 μg m −3 in a PM 2.5 sample collected from central Amazonia and the southeastern U.S., respectively. The improved resolution clearly reveals isomeric patterns specific to methyltetrol sulfates from acid-catalyzed multiphase chemistry of β- and δ-IEPOX. We also demonstrate that conventional GC/EI-MS analyses overestimate 2-methyltetrols by up to 188%, resulting (in part) from the thermal degradation of methyltetrol sulfates. Lastly, C 5 -alkene triols and 3-methyltetrahydrofuran-3,4-diols are found to be largely GC/EI-MS artifacts formed from thermal degradation of 2-methyltetrol sulfates and 3-methyletrol sulfates, respectively, and are not detected with HILIC/ESI-HR-QTOFMS. 
    more » « less
  2. Rationale

    Nitrogen isotopic compositions (δ15N) of source and trophic amino acids (AAs) are crucial tracers of N sources and trophic enrichments in diverse fields, including archeology, astrobiochemistry, ecology, oceanography, and paleo‐sciences. The current analytical technique using gas chromatography‐combustion‐isotope ratio mass spectrometry (GC/C/IRMS) requires derivatization, which is not compatible with some key AAs. Another approach using high‐performance liquid chromatography‐elemental analyzer‐IRMS (HPLC/EA/IRMS) may experience coelution issues with other compounds in certain types of samples, and the highly sensitive nano‐EA/IRMS instrumentations are not widely available.

    Methods

    We present a method for high‐precision δ15N measurements of AAs (δ15N‐AA) optimized for canonical source AA‐phenylalanine (Phe) and trophic AA‐glutamic acid (Glu). This offline approach entails purification and separation via high‐pressure ion‐exchange chromatography (IC) with automated fraction collection, the sequential chemical conversion of AA to nitrite and then to nitrous oxide (N2O), and the final determination of δ15N of the produced N2O via purge‐and‐trap continuous‐flow isotope ratio mass spectrometry (PT/CF/IRMS).

    Results

    The cross‐plots of δ15N of Glu and Phe standards (four different natural‐abundance levels) generated by this method and their accepted values have a linear regression slope of 1 and small intercepts demonstrating high accuracy. The precisions were 0.36‰–0.67‰ for Phe standards and 0.27‰–0.35‰ for Glu standards. Our method and the GC/C/IRMS approach produced equivalent δ15N values for two lab standards (McCarthy Lab AA mixture and cyanobacteria) within error. We further tested our method on a wide range of natural sample matrices and obtained reasonable results.

    Conclusions

    Our method provides a reliable alternative to the current methods for δ15N‐AA measurement as IC or HPLC‐based techniques that can collect underivatized AAs are widely available. Our chemical approach that converts AA to N2O can be easily implemented in laboratories currently analyzing δ15N of N2O using PT/CF/IRMS. This method will help promote the use of δ15N‐AA in important studies of N cycling and trophic ecology in a wide range of research areas.

     
    more » « less
  3. Abstract

    Characterizing low molecular weight (LMW) dissolved organic matter (DOM) in soils and evaluating the availability of this labile pool is critical to understanding the underlying mechanisms that control carbon storage or release across terrestrial systems. However, due to wide-ranging physicochemical diversity, characterizing this complex mixture of small molecules and how it varies across space remains an analytical challenge. Here, we evaluate an untargeted approach to detect qualitative and relative-quantitative variations in LMW DOM with depth using water extracts from a soil core from the Alaskan Arctic, a unique system that contains nearly half the Earth’s terrestrial carbon and is rapidly warming due to climate change. We combined reversed-phase and hydrophilic interaction liquid chromatography, and nano-electrospray ionization coupled with high-resolution tandem mass spectrometry in positive- and negative-ionization mode. The optimized conditions were sensitive, robust, highly complementary, and enabled detection and putative annotations of a wide range of compounds (e.g. amino acids, plant/microbial metabolites, sugars, lipids, peptides). Furthermore, multivariate statistical analyses revealed subtle but consistent and significant variations with depth. Thus, this platform is useful not only for characterizing LMW DOM, but also for quantifying relative variations in LMW DOM availability across space, revealing hotspots of biogeochemical activity for further evaluation.

     
    more » « less
  4. Ciguatera poisoning is a global health concern caused by the consumption of seafood containing ciguatoxins (CTXs). Detection of CTXs poses significant analytical challenges due to their low abundance even in highly toxic fish, the diverse and in-part unclarified structures of many CTX congeners, and the lack of reference standards. Selective detection of CTXs requires methods such as liquid chromatography coupled to tandem mass spectrometry (LC–MS/MS) or high-resolution MS (LC–HRMS). While HRMS data can provide greatly improved resolution, it is typically less sensitive than targeted LC–MS/MS and does not reliably comply with the FDA guidance level of 0.1 µg/kg CTXs in fish tissue that was established for Caribbean CTX-1 (C-CTX-1). In this study, we provide a new chemical derivatization approach employing a fast and simple one-pot derivatization with Girard’s reagent T (GRT) that tags the C-56-ketone intermediate of the two equilibrating C-56 epimers of C-CTX-1 with a quaternary ammonium moiety. This derivatization improved the LC–MS/MS and LC–HRMS responses to C-CTX-1 by approximately 40- and 17-fold on average, respectively. These improvements in sensitivity to the GRT-derivative of C-CTX-1 are attributable to: the improved ionization efficiency caused by insertion of a quaternary ammonium ion; the absence of adduct-ions and water-loss peaks for the GRT derivative in the mass spectrometer, and; the prevention of on-column epimerization (at C-56 of C-CTX-1) by GRT derivatization, leading to much better chromatographic peak shapes. This C-CTX-1–GRT derivatization strategy mitigates many of the shortcomings of current LC–MS analyses for C-CTX-1 by improving instrument sensitivity, while at the same time adding selectivity due to the reactivity of GRT with ketones and aldehydes. 
    more » « less
  5. Nakamura, Yuki (Ed.)
    Abstract Assessing central carbon metabolism in plants can be challenging due to the dynamic range in pool sizes, with low levels of important phosphorylated sugars relative to more abundant sugars and organic acids. Here, we report a sensitive liquid chromatography–mass spectrometry method for analysing central metabolites on a hybrid column, where both anion-exchange and hydrophilic interaction chromatography (HILIC) ligands are embedded in the stationary phase. The liquid chromatography method was developed for enhanced selectivity of 27 central metabolites in a single run with sensitivity at femtomole levels observed for most phosphorylated sugars. The method resolved phosphorylated hexose, pentose, and triose isomers that are otherwise challenging. Compared with a standard HILIC approach, these metabolites had improved peak areas using our approach due to ion enhancement or low ion suppression in the biological sample matrix. The approach was applied to investigate metabolism in high lipid-producing tobacco leaves that exhibited increased levels of acetyl-CoA, a precursor for oil biosynthesis. The application of the method to isotopologue detection and quantification was considered through evaluating 13C-labeled seeds from Camelina sativa. The method provides a means to analyse intermediates more comprehensively in central metabolism of plant tissues. 
    more » « less