skip to main content

Title: The International Pulsar Timing Array: second data release
ABSTRACT

In this paper, we describe the International Pulsar Timing Array second data release, which includes recent pulsar timing data obtained by three regional consortia: the European Pulsar Timing Array, the North American Nanohertz Observatory for Gravitational Waves, and the Parkes Pulsar Timing Array. We analyse and where possible combine high-precision timing data for 65 millisecond pulsars which are regularly observed by these groups. A basic noise analysis, including the processes which are both correlated and uncorrelated in time, provides noise models and timing ephemerides for the pulsars. We find that the timing precisions of pulsars are generally improved compared to the previous data release, mainly due to the addition of new data in the combination. The main purpose of this work is to create the most up-to-date IPTA data release. These data are publicly available for searches for low-frequency gravitational waves and other pulsar science.

Authors:
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  more » ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;   « less
Publication Date:
NSF-PAR ID:
10123600
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
490
Issue:
4
Page Range or eLocation-ID:
p. 4666-4687
ISSN:
0035-8711
Publisher:
Oxford University Press
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT Efforts are underway to use high-precision timing of pulsars in order to detect low-frequency gravitational waves. A limit to this technique is the timing noise generated by dispersion in the plasma along the line of sight to the pulsar, including the solar wind. The effects due to the solar wind vary with time, influenced by the change in solar activity on different time-scales, ranging up to ∼11 yr for a solar cycle. The solar wind contribution depends strongly on the angle between the pulsar line of sight and the solar disc, and is a dominant effect at small separations. Althoughmore »solar wind models to mitigate these effects do exist, they do not account for all the effects of the solar wind and its temporal changes. Since low-frequency pulsar observations are most sensitive to these dispersive delays, they are most suited to test the efficacy of these models and identify alternative approaches. Here, we investigate the efficacy of some solar wind models commonly used in pulsar timing using long-term, high-cadence data on six pulsars taken with the Long Wavelength Array, and compare them with an operational solar wind model. Our results show that stationary models of the solar wind correction are insufficient to achieve the timing noise desired by pulsar timing experiments, and we need to use non-stationary models, which are informed by other solar wind observations, to obtain accurate timing residuals.« less
  2. ABSTRACT We searched for an isotropic stochastic gravitational wave background in the second data release of the International Pulsar Timing Array, a global collaboration synthesizing decadal-length pulsar-timing campaigns in North America, Europe, and Australia. In our reference search for a power-law strain spectrum of the form $h_c = A(f/1\, \mathrm{yr}^{-1})^{\alpha }$, we found strong evidence for a spectrally similar low-frequency stochastic process of amplitude $A = 3.8^{+6.3}_{-2.5}\times 10^{-15}$ and spectral index α = −0.5 ± 0.5, where the uncertainties represent 95 per cent credible regions, using information from the auto- and cross-correlation terms between the pulsars in the array. For a spectral index of α =more »−2/3, as expected from a population of inspiralling supermassive black hole binaries, the recovered amplitude is $A = 2.8^{+1.2}_{-0.8}\times 10^{-15}$. None the less, no significant evidence of the Hellings–Downs correlations that would indicate a gravitational-wave origin was found. We also analysed the constituent data from the individual pulsar timing arrays in a consistent way, and clearly demonstrate that the combined international data set is more sensitive. Furthermore, we demonstrate that this combined data set produces comparable constraints to recent single-array data sets which have more data than the constituent parts of the combination. Future international data releases will deliver increased sensitivity to gravitational wave radiation, and significantly increase the detection probability.« less
  3. Abstract While observations of many high-precision radio pulsars of order ≲1 μ s across the sky are needed for the detection and characterization of a stochastic background of low-frequency gravitational waves (GWs), sensitivity to single sources of GWs requires even higher timing precision. The Argentine Institute of Radio Astronomy (IAR; Instituto Argentino de Radioastronomía) has begun observations of the brightest known millisecond pulsar, J0437−4715. Even though the two antennas are smaller than other single-dish telescopes previously used for pulsar timing array (PTA) science, the IAR’s capability to monitor this pulsar daily, coupled with the pulsar’s brightness, allows for high-precision measurementsmore »of pulse-arrival time. While upgrades of the facility are currently underway, we show that modest improvements beyond current plans will provide IAR with unparalleled sensitivity to this pulsar. The most stringent upper limits on single GW sources come from the North American Nanohertz Observatory for Gravitational Waves (NANOGrav). Observations of PSR J0437−4715 will provide a significant sensitivity increase in NANOGrav’s “blind spot” in the sky where fewer pulsars are currently being observed. With state-of-the-art instrumentation installed, we estimate the array’s sensitivity will improve by a factor of ≈2–4 over 10 yr for 20% of the sky with the inclusion of this pulsar, as compared to a static version of the PTA used in NANOGrav’s most recent limits. More modest instrumentation results in factors of ≈1.4–3. We identify four other candidate pulsars as suitable for inclusion in PTA efforts. International PTA efforts will also benefit from inclusion of these data, given the potential achievable sensitivity.« less
  4. Abstract Radio pulsar signals are significantly perturbed by their propagation through the ionized interstellar medium. In addition to the frequency-dependent pulse times of arrival due to dispersion, pulse shapes are also distorted and shifted, having been scattered by the inhomogeneous interstellar plasma, affecting pulse arrival times. Understanding the degree to which scattering affects pulsar timing is important for gravitational-wave detection with pulsar timing arrays (PTAs), which depend on the reliability of pulsars as stable clocks with an uncertainty of ∼100 ns or less over ∼10 yr or more. Scattering can be described as a convolution of the intrinsic pulse shapemore »with an impulse response function representing the effects of multipath propagation. In previous studies, the technique of cyclic spectroscopy has been applied to pulsar signals to deconvolve the effects of scattering from the original emitted signals, increasing the overall timing precision. We present an analysis of simulated data to test the quality of deconvolution using cyclic spectroscopy over a range of parameters characterizing interstellar scattering and pulsar signal-to-noise ratio (S/N). We show that cyclic spectroscopy is most effective for high S/N and/or highly scattered pulsars. We conclude that cyclic spectroscopy could play an important role in scattering correction to distant populations of highly scattered pulsars not currently included in PTAs. For future telescopes and for current instruments such as the Green Bank Telescope upgraded with the ultrawide bandwidth receiver, cyclic spectroscopy could potentially double the number of PTA-quality pulsars.« less
  5. Abstract When galaxies merge, the supermassive black holes in their centers may form binaries and emit low-frequency gravitational radiation in the process. In this paper, we consider the galaxy 3C 66B, which was used as the target of the first multimessenger search for gravitational waves. Due to the observed periodicities present in the photometric and astrometric data of the source, it has been theorized to contain a supermassive black hole binary. Its apparent 1.05-year orbital period would place the gravitational-wave emission directly in the pulsar timing band. Since the first pulsar timing array study of 3C 66B, revised models ofmore »the source have been published, and timing array sensitivities and techniques have improved dramatically. With these advances, we further constrain the chirp mass of the potential supermassive black hole binary in 3C 66B to less than (1.65 ± 0.02) × 10 9   M ⊙ using data from the NANOGrav 11-year data set. This upper limit provides a factor of 1.6 improvement over previous limits and a factor of 4.3 over the first search done. Nevertheless, the most recent orbital model for the source is still consistent with our limit from pulsar timing array data. In addition, we are able to quantify the improvement made by the inclusion of source properties gleaned from electromagnetic data over “blind” pulsar timing array searches. With these methods, it is apparent that it is not necessary to obtain exact a priori knowledge of the period of a binary to gain meaningful astrophysical inferences.« less