We present oxygen isotope and charcoal accumulation records from two lakes in eastern Washington that have sufficient temporal resolution to quantitatively compare with tree‐ring records and meteorological data. Hydroclimate reconstructions from tree‐rings and lake sediments show close correspondence after accounting for seasonal‐ to centennial‐ scale temporal sensitivities. Carbonate δ18O measurements from Castor and Round lakes reveal that the Medieval Climate Anomaly (MCA) experienced wetter November‐March conditions than the Little Ice Age (LIA). Charcoal records from Castor, Round, and nearby lakes show elevated fire activity during the LIA compared to the MCA. Increased multidecadal hydroclimate variability after 1250 CE is evident in proxy records throughout western North America. In the Upper Columbia River Basin, multidecadal wet periods during the LIA may have enhanced fuel loads that burned in subsequent dry periods. A notable decline in biomass burning occurred with Euro‐American settlement in the late nineteenth century.
more »
« less
Century-Scale Fire Dynamics in a Savanna Ecosystem.
(1) Background: Frequent fire, climate variability, and human activities collectively influence savanna ecosystems. The relative role of these three factors likely varies on interannual, decadal, and centennial timescales. Here, we tested if Euro-American activities uncoupled drought and fire frequencies relative to previous centuries in a temperate savanna site. (2) Methods: We combined records of fire frequency from tree ring fire scars and sediment charcoal abundance, and a record of fuel type based on charcoal particle morphometry to reconstruct centennial scale shifts in fire frequency and fuel sources in a savanna ecosystem. We also tested the climate influence on fire occurrence with an independently derived tree-ring reconstruction of drought. We contextualized these data with historical records of human activity. (3) Results: Tree fire scars revealed eight fire events from 1822–1924 CE, followed by localized suppression. Charcoal signals highlight 13 fire episodes from 1696–2001. Fire–climate coupling was not clearly evident both before and after Euro American settlement The dominant fuel source shifted from herbaceous to woody fuel during the early-mid 20th century. (4) Conclusions: Euro-American settlement and landscape fragmentation disrupted the pre-settlement fire regime (fire frequency and fuel sources). Our results highlight the potential for improved insight by synthesizing interpretation of multiple paleofire proxies, especially in fire regimes with mixed fuel sources.
more »
« less
- Award ID(s):
- 1831944
- PAR ID:
- 10123824
- Date Published:
- Journal Name:
- Fire
- Volume:
- 2
- Issue:
- 3
- ISSN:
- 2571-6255
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Researchers have long debated the degree to which Native American land use altered landscapes in the Americas prior to European colonization. Human–environment interactions in southern South America are inferred from new pollen and charcoal data from Laguna El Sosneado and their comparison with high-resolution paleoenvironmental records and archaeological/ethnohistorical information at other sites along the eastern Andes of southern Argentina and Chile (34–52°S). The records indicate that humans, by altering ignition frequency and the availability of fuels, variously muted or amplified the effects of climate on fire regimes. For example, fire activity at the northern and southern sites was low at times when the climate and vegetation were suitable for burning but lacked an ignition source. Conversely, abundant fires set by humans and infrequent lightning ignitions occurred during periods when warm, dry climate conditions coincided with ample vegetation (i.e., fuel) at midlatitude sites. Prior to European arrival, changes in Native American demography and land use influenced vegetation and fire regimes locally, but human influences were not widely evident until the 16th century, with the introduction of nonnative species (e.g., horses), and then in the late 19th century, as Euro-Americans targeted specific resources to support local and national economies. The complex interactions between past climate variability, human activities, and ecosystem dynamics at the local scale are overlooked by approaches that infer levels of land use simply from population size or that rely on regionally composited data to detect drivers of past environmental change.more » « less
-
Abstract AimAlthough it is established that climate and fire have greatly influenced the long‐term ecosystem dynamics of Patagonia south of 40°S, the environmental history from northernmost Patagonia (37–40°S), where endemic and endangered monkey puzzle tree (Araucaria araucana) occurs, is poorly known. Here we ask: (a) What is the Holocene vegetation and fire history at the north‐eastern extent ofA. araucanaforest? (b) How have climate and humans influenced the past distribution ofA. araucana? LocationNorthernmost Patagonia, Argentina and Chile (37–40°S). TaxaAraucaria araucana,Nothofagus, Poaceae. MethodsSedimentary pollen and charcoal from Laguna Portezuelo (37.9°S, 71.0°W; 1,730 m; 11,100 BP) were evaluated using statistical methods and compared with other palaeoecological, independent palaeoclimate, and historical records to assess how changes in climate and land use influenced local‐to‐regional environmental history. ResultsAn open forest‐steppe landscape persisted at L. Portezuelo throughout the Holocene with generally low‐to‐moderate fire activity. IncreasedNothofaguspollen after ~6,590 BP suggests increases in shrubland and moisture in association with cooler conditions and greater seasonality and ENSO activity.Araucariapollen appeared at L. Portezuelo at ~6,380 BP, but was low in abundance until ~370 BP, when it rose with charcoal levels. This increase inAraucariaand fire coincided with a regional influx of Mapuche American Indians.Nothofagusdeforestation andPinussilviculture marked Euro‐American settlement beginning in the 19–20th century. Main conclusions(a) Rapid postglacial warming and drying limited the distribution ofAraucariain the central valley of Chile. In the middle and late Holocene, decreased temperatures and greater seasonality and ENSO activity increased precipitation variability allowingAraucariaexpansion at its north‐eastern limit. (b) Greater abundance ofAraucariaand heightened fire activity at L. Portezuelo after 370 BP coincided with increased Mapuche‐Pehuenche American Indian land use, suggesting thatAraucariamay have been managed in a human‐altered landscape.more » « less
-
Cernusak, Lucas (Ed.)Abstract Recent climate extremes in Mongolia have ignited a renewed interest in understanding past climate variability over centennial and longer time scales across north-central Asia. Tree-ring width records have been extensively studied in Mongolia as proxies for climate reconstruction, however, the climate and environmental signals of tree-ring stable isotopes from this region need to be further explored. Here, we evaluated a 182-year record of tree-ring δ13C and δ18O from Siberian Pine (Pinus sibirica Du Tour) from a xeric site in central Mongolia (Khorgo Lava) to elucidate the environmental factors modulating these parameters. First, we analyzed the climate sensitivity of tree-ring δ13C and δ18O at Khorgo Lava for comparison with ring-width records, which have been instrumental in reconstructing hydroclimate in central Mongolia over two millennia. We also compared stable isotope records of trees with partial cambial dieback (‘strip-bark morphology’), a feature of long-lived conifers growing on resource-limited sites, and trees with a full cambium (‘whole-bark morphology’), to assess the inferred leaf-level physiological behavior of these trees. We found that interannual variability in tree-ring δ13C and δ18O reflected summer hydroclimatic variability, and captured recent, extreme drought conditions, thereby complementing ring-width records. The tree-ring δ18O records also had a spring temperature signal and thus expanded the window of climate information recorded by these trees. Over longer time scales, strip-bark trees had an increasing trend in ring-widths, δ13C (and intrinsic water-use efficiency, iWUE) and δ18O, relative to whole-bark trees. Our results suggest that increases in iWUE at this site might be related to a combination of leaf-level physiological responses to increasing atmospheric CO2, recent drought, and stem morphological changes. Our study underscores the potential of stable isotopes for broadening our understanding of past climate in north-central Asia. However, further studies are needed to understand how stem morphological changes might impact stable isotopic trends.more » « less
-
Abstract Consumers, including megaherbivores and fire, are considered important limiting forces for woody plants and canopy closure in African savannas. However, climatic events like drought can also play a significant role in limiting trees and maintaining tree‐grass coexistence in savannas. The extent to which top‐down control (e.g. megaherbivores) and bottom‐up resource limitation through drought and competition interact to influence savanna tree mortality and woody structure is unclear. Here, we compared the change in the number of large trees before and after a severe drought in a savanna with elephants ( Loxodonta africana ) and one without elephants. Elephants and drought both limited the number of large trees at our sites, but contrary to our predictions, there was no interactive effect of these drivers on overall changes in tree densities. However, there was a synergistic effect on the dominant tree species, Senegalia nigrescens , such that tree loss post‐drought was greater where elephants were present compared to where they were absent. Hence, our results suggest that species‐specific differences in drought resistance, as well as density‐dependent factors, likely impact the severity of drought effects on savanna tree communities. In savannas, drought has the potential to exert strong control on tree survival and prevent canopy closure, thus partially filling the role of megaherbivores in limiting large trees when these consumers are absent. As drought severity and frequency are predicted to increase in the future, the influence of drought on savanna vegetation structure becomes increasingly important to consider.more » « less
An official website of the United States government

