skip to main content

Title: Substrate curvature induces fallopian tube epithelial cell invasion via cell–cell tension in a model of ovarian cortical inclusion cysts

Throughout the body, epithelial tissues contain curved features (e.g. cysts, ducts and crypts) that influence cell behaviors. These structures have varied curvature, with flat structures having zero curvature and structures such as crypts having large curvature. In the ovary, cortical inclusion cysts (CICs) of varying curvatures are found, and fallopian tube epithelial (FTE) cells have been found trapped within these cysts. FTE are the precursor for ovarian cancer, and the CIC niche has been proposed to play a role in ovarian cancer progression. We hypothesized that variations in ovarian CIC curvature that occur during cyst resolution impact the ability of trapped FTE cells to invade into the surrounding stroma. Using a lumen model in collagen gels, we determined that increased curvature resulted in more invasions of mouse FTE cells. To isolate curvature as a system parameter, we developed a novel technique to pattern concave curvatures into collagen gels. When FTE cells were seeded to confluency on curved substrates, increases in curvature increased the number of invading FTE cells and the invasion distance. FTE invasion into collagen substrates with higher curvature depended on matrix metalloproteinases (MMPs), but expression of collagen I degrading Mmps was not different on curved and flat more » regions. A finite-element model predicted that contractility and cell–cell connections were essential for increased invasion on substrates with higher curvature, while cell–substrate interactions had minimal effect. Experiments supported these predictions, with invasion decreased by blebbistatin, ethylene glycol-bis(β-aminoethyl ether)-N,N,N’,N’-tetraacetic acid (EGTA) or N-cadherin-blocking antibody, but with no effect from a focal adhesion kinase inhibitor. Finally, experimental evidence supports that cell invasion on curved substrates occurs in two phases—a cell–cell-dependent initiation phase where individual cells break away from the monolayer and an MMP-dependent phase as cells migrate further into the collagen matrix.

« less
 ;  ;  ;  
Award ID(s):
Publication Date:
Journal Name:
Integrative Biology
Oxford University Press
Sponsoring Org:
National Science Foundation
More Like this
  1. Age is a leading risk factor for developing breast cancer. This may be in part to the time required for acquiring sufficient cancer mutations; however, stromal cells that accumulate in tissues and undergo senescence eventually develop a senescence-associated secretory phenotype that alters the microenvironment to promote cancer. Our focus is on mesenchymal stem cells (MSCs) – stromal cells recruited to tumors due to their natural tropism for inflammatory tissues; MSCs have been shown to enhance the metastatic potential of tumor cells through direct interactions or paracrine signaling within the tumor. In the tumor, MSCs can differentiate into carcinoma-associated fibroblasts that play a central role in tumor growth and matrix remodeling. We recently investigated the molecular and mechanical differences in pre- and post- senescent MSCs and how their interactions with MDA-MB-231 breast cancer cells contribute to malignancy. Our data show post-senescent MSCs are larger and less motile, with more homogeneous mechanical properties than pre-senescent MSCs. In-depth omics analysis revealed differentially regulated genes and peptides including factors related to inflammatory cytokines, cell adhesion to the extracellular matrix, and cytoskeletal regulation. A 3D co-culture model was used to assess the effects of pre- and post- senescent MSCs on collagen matrix remodeling. Although post-senescentmore »MSCs were far less motile than pre-senescent MSCs and less contractile with the matrix, they profoundly altered matrix protein deposition and crosslinking, which resulted in local matrix stiffening effects. Post-senescent MSCs also induced an invasive breast cancer cell phenotype, characterized by increased proliferation and invasion of breast cancer cells. This invasive breast cancer cell behavior was further amplified when MDA-MB-231 was co-cultured with a mixture of pre- and post- senescent MSCs; this result was attributed to matrix remodeling and soluble factor secretion effects of post-senescent MSCs, which enhanced the migration of pre-senescent MSCs allowing them to form tracks in the collagen network for cancer cells to follow. Finally, molecular inhibitors targeting actomyosin contractility and adhesion were used to alter MSC interactions with breast cancer cells. Actin depolymerizing agent and focal adhesion kinase inhibitor were most efficient and completely able to block the effects of post-senescent MSCs on MDA-MB-231 invasion in collagen gels. This comprehensive approach can be used to identify molecular pathways regulating heterotypic interactions of post-senescent MSCs with other cells in the tumor. Furthermore, the local matrix stiffening effect of post-senescent MSCs may play a critical role in breast cancer progression.« less
  2. Mesenchymal stem cells (MSCs) that accumulate in the primary tumor due to their natural tropism for inflammatory tissues enhance the metastatic potential of tumor cells through direct interactions with tumor cells or paracrine signaling within the tumor microenvironment. MSCs also undergo senescence, which leads to increased production of pro-inflammatory cytokines and matrix-degrading enzymes. Senescence is a critical mechanism of limiting abnormal growth and cancer development through tumor suppression; however, senescent cells that accumulate in tissues eventually develop a senescence-associated secretory phenotype that alters the microenvironment to promote cancer. Increased understanding of the biophysical properties of senescent MSCs and how they mediate cell-cell interactions in the tumor may be useful in identifying novel biomarkers for senescent stromal cells in tissues or aggressive cancer cells that form in an aging stroma. A high-content single cell biophysical approach was used to define the mechanical properties of pre- and post- senescent MSCs. Our data shows post-senescent MSCs are larger and less motile, with more homogeneous mechanical properties than their pre-senescent counterparts. A robust molecular screening approach combining genome-wide microarray analysis with mass spec-based proteomics was used to establish the molecular differences in pre- and post- senescent MSCs. Our data show a consistent correlation ofmore »up and down regulated gene and peptide expression. A 3D co-culture model was used to assess the effects of pre- and post- senescent MSCs on breast cancer cell motility and invasion in 3D collagen gels. Post-senescent MSCs induced an invasive breast cancer cell phenotype, characterized by increased spreading of breast cancer cells in collagen, increased numbers of invading cells, and morphological elongation of breast cancer cells. Surprisingly, this invasive breast cancer cell behavior was further amplified when breast cancer cells were co-cultured with both pre- and post- senescent cells.« less
  3. Abstract

    The kidney tubule consists of a single layer of epithelial cells supported by the tubular basement membrane (TBM), a thin layer of specialized extracellular matrix (ECM). The mechanical properties of the ECM are important for regulating a wide range of cell functions including proliferation, differentiation and cell survival. Increased ECM stiffness plays a role in promoting multiple pathological conditions including cancer, fibrosis and heart disease. How changes in TBM mechanics regulate tubular epithelial cell behavior is not fully understood. Here we introduce a cell culture system that utilizes in vivo-derived TBM to investigate cell–matrix interactions in kidney proximal tubule cells. Basement membrane mechanics was controlled using genipin, a biocompatibility crosslinker. Genipin modification resulted in a dose-dependent increase in matrix stiffness. Crosslinking had a marginal but statistically significant impact on the diffusive molecular transport properties of the TBM, likely due to a reduction in pore size. Both native and genipin-modified TBM substrates supported tubular epithelial cell growth. Cells were able to attach and proliferate to form confluent monolayers. Tubular epithelial cells polarized and assembled organized cell–cell junctions. Genipin modification had minimal impact on cell viability and proliferation. Genipin stiffened TBM increased gene expression of pro-fibrotic cytokines and altered gene expressionmore »for N-cadherin, a proximal tubular epithelial specific cell–cell junction marker. This work introduces a new cell culture model for cell-basement membrane mechanobiology studies that utilizes in vivo-derived basement membrane. We also demonstrate that TBM stiffening affects tubular epithelial cell function through altered gene expression of cell-specific differentiation markers and induced increased expression of pro-fibrotic growth factors.

    « less
  4. Abstract

    Extracellular matrix (ECM) mechanical properties upregulate cancer invasion, cell contractility, and focal adhesion formation. Alteration in energy metabolism is a known characteristic of cancer cells (i.e., Warburg effect) and modulates cell invasion. There is little evidence to show if collagen density can alter cancer cell metabolism. We investigated changes in energy metabolism due to collagen density in five breast cell lines by measuring the fluorescence lifetime of NADH. We found that only triple-negative breast cancer cells, MDA-MB231 and MDA-MB468 cells, had an increased population of bound NADH, indicating an oxidative phosphorylation (OXPHOS) signature, as collagen density decreased. When inhibiting ROCK and cell contractility, MDA-MB231 cells on glass shifted from glycolysis (GLY) to OXPHOS, confirming the intricate relationship between mechanosensing and metabolism. MCF10A cells showed less significant changes in metabolism, shifting towards GLY as collagen density decreased. The MCF-7 and T-47D, less invasive breast cancer cells, compared to the MDA-MB231 and MDA-MB468 cells, showed no changes regardless of substrate. In addition, OXPHOS or GLY inhibitors in MDA-MB231 cells showed dramatic shifts from OXPHOS to GLY orvice versa. These results provide an important link between cellular metabolism, contractility, and collagen density in human breast cancer.

  5. In epithelial cancers, cells must invade through basement membranes (BMs) to metastasize. The BM, a thin layer of extracellular matrix underlying epithelial and endothelial tissues, is primarily composed of laminin and collagen IV and serves as a structural barrier to cancer cell invasion, intravasation, and extravasation. BM invasion has been thought to require protease degradation since cells, which are typically on the order of 10 µm in size, are too large to squeeze through the nanometer-scale pores of the BM. However, recent studies point toward a more complex picture, with physical forces generated by cancer cells facilitating protease-independent BM invasion. Moreover, collective cell interactions, proliferation, cancer-associated fibroblasts, myoepithelial cells, and immune cells are all implicated in regulating BM invasion through physical forces. A comprehensive understanding of BM structure and mechanics and diverse modes of BM invasion may yield new strategies for blocking cancer progression and metastasis.