skip to main content


Title: Electrostatic Complementarity Drives Amyloid/Nucleic Acid Co‐Assembly
Abstract

Proteinaceous plaques associated with neurodegenerative diseases contain many biopolymers including the polyanions glycosaminoglycans and nucleic acids. Polyanion‐induced amyloid fibrillation has been implicated in disease etiology, but structural models for amyloid/nucleic acid co‐assemblies remain limited. Here we constrain nucleic acid/peptide interactions with model peptides that exploit electrostatic complementarity and define a novel amyloid/nucleic acid co‐assembly. The structure provides a model for nucleic acid/amyloid co‐assembly as well as insight into the energetic determinants involved in templating amyloid assembly.

 
more » « less
NSF-PAR ID:
10124203
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Angewandte Chemie International Edition
Volume:
59
Issue:
1
ISSN:
1433-7851
Page Range / eLocation ID:
p. 358-363
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Proteinaceous plaques associated with neurodegenerative diseases contain many biopolymers including the polyanions glycosaminoglycans and nucleic acids. Polyanion‐induced amyloid fibrillation has been implicated in disease etiology, but structural models for amyloid/nucleic acid co‐assemblies remain limited. Here we constrain nucleic acid/peptide interactions with model peptides that exploit electrostatic complementarity and define a novel amyloid/nucleic acid co‐assembly. The structure provides a model for nucleic acid/amyloid co‐assembly as well as insight into the energetic determinants involved in templating amyloid assembly.

     
    more » « less
  2. na (Ed.)
    T-Cell Intracellular Antigen-1 (TIA1) is a 43 kDa multi-domain RNA-binding protein involved in stress granule formation during eukaryotic stress response, and has been implicated in neurodegenerative diseases including Welander distal myopathy and amyotrophic lateral sclerosis. TIA1 contains three RNA recognition motifs (RRMs), which are capable of binding nucleic acids and a C-terminal Q/N-rich prion-related domain (PRD) which has been variously described as intrinsically disordered or prion inducing and is believed to play a role in promoting liquid-liquid phase separation connected with the assembly of stress granule formation. Motivated by the fact that our prior work shows RRMs 2 and 3 are well-ordered in an oligomeric full-length form, while RRM1 and the PRD appear to phase separate, the present work addresses whether the oligomeric form is functional and competent for binding, and probes the consequences of nucleic acid binding for oligomerization and protein conformation change. New SSNMR data show that ssDNA binds to full-length oligomeric TIA1 primarily at the RRM2 domain, but also weakly at the RRM3 domain, and Zn2+ binds primarily to RRM3. Binding of Zn2+ and DNA was reversible for the full-length wild type oligomeric form, and did not lead to formation of amyloid fibrils, despite the presence of the C-terminal prion-related domain. While TIA1:DNA complexes appear as long “daisy chained” structures, the addition of Zn2+ caused the structures to collapse. We surmise that this points to a regulatory role for Zn2+. By occupying various “half” binding sites on RRM3 Zn2+ may shift the nucleic acid binding off RRM3 and onto RRM2. More importantly, the use of different half sites on different monomers may introduce a mesh of crosslinks in the supramolecular complex rendering it compact and markedly reducing the access to the nucleic acids (including transcripts) from solution. 
    more » « less
  3. Abstract

    Small molecule targeting of DNA and RNA sequences has come into focus as a therapeutic strategy for diseases such as myotonic dystrophy type 1 (DM1), a trinucleotide repeat disease characterized by RNA gain‐of‐function. Herein, we report a novel template‐selected, reversible assembly of therapeutic agentsin situvia aldehyde‐amine condensation. Rationally designed small molecule targeting agents functionalized with either an aldehyde or an amine were synthesized and screened against the target nucleic acid sequence. The assembly of fragments was confirmed by MALDI‐MS in the presence of DM1‐relevant nucleic acid sequences. The resulting hit combinations of aldehyde and amine inhibited the formation of r(CUG)expin vitro in a cooperative manner at low micromolar levels and rescued mis‐splicing defects in DM1 model cells. This reversible template‐selected assembly is a promising approach to achieve cell permeable and multivalent targeting viain situsynthesis and could be applied to other nucleic acid targets.

     
    more » « less
  4. ABSTRACT

    Dynamic and flexible nucleic acid models can provide current and future scientists with physical intuition for the structure of DNA and the ways that DNA and its synthetic mimics can be used to build self-assembling structures and advanced nanomachines. As more research labs and classrooms dive into the field of structural nucleic acid nanotechnology, students and researchers need access to interactive, dynamic, handheld models. Here, we present a 3D-printable kit for the construction of DNA and peptide nucleic acid (PNA). We have engineered a previous modular DNA kit to reduce costs while improving ease of assembly, flexibility, and robustness. We have also expanded the scope of available snap-together models by creating the first 3D-printable models of γPNA, an emerging material for nuclease- and protease-resistance nanotechnology. Building on previous research, representative nucleic acid duplexes were split into logical monomer segments, and atomic coordinates were used to create solid models for 3D printing. We used a human factors approach to customize 3 types of articulated snap-together connectors that allow for physically relevant motion characteristic of each interface in the model. Modules are easy to connect and separate manually but stay together when the model is manipulated. To greatly reduce cost, we bundled these segments for printing, and we created a miniaturized version that uses less than half the printing material to build. Our novel 3D-printed articulated snap-together models capture the flexibility and robustness of DNA and γPNA nanostructures. Resulting handheld helical models replicate the geometries in published structures and can now flex to form crossovers and allow biologically relevant zipping and unzipping to allow complex demonstrations of nanomachines undergoing strand displacement reactions. Finally, the same tools used to create these models can be readily applied to other types of backbones and nucleobases for endless research and education possibilities.

     
    more » « less
  5. Abstract

    Screening amino acid sequence space via experiments to discover peptides that self-assemble into amyloid fibrils is challenging. We have developed a computational peptide assembly design (PepAD) algorithm that enables the discovery of amyloid-forming peptides. Discontinuous molecular dynamics (DMD) simulation with the PRIME20 force field combined with the FoldAmyloid tool is used to examine the fibrilization kinetics of PepAD-generated peptides. PepAD screening of ∼10,000 7-mer peptides resulted in twelve top-scoring peptides with two distinct hydration properties. Our studies revealed that eight of the twelve in silico discovered peptides spontaneously form amyloid fibrils in the DMD simulations and that all eight have at least five residues that the FoldAmyloid tool classifies as being aggregation-prone. Based on these observations, we re-examined the PepAD-generated peptides in the sequence pool returned by PepAD and extracted five sequence patterns as well as associated sequence signatures for the 7-mer amyloid-forming peptides. Experimental results from Fourier transform infrared spectroscopy (FTIR), thioflavin T (ThT) fluorescence, circular dichroism (CD), and transmission electron microscopy (TEM) indicate that all the peptides predicted to assemble in silico assemble into antiparallel β-sheet nanofibers in a concentration-dependent manner. This is the first attempt to use a computational approach to search for amyloid-forming peptides based on customized settings. Our efforts facilitate the identification of β-sheet-based self-assembling peptides, and contribute insights towards answering a fundamental scientific question: “What does it take, sequence-wise, for a peptide to self-assemble?”

     
    more » « less