skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, December 13 until 2:00 AM ET on Saturday, December 14 due to maintenance. We apologize for the inconvenience.


Title: Changes in Extreme Precipitation in the Northeast United States: 1979–2014

Extreme precipitation can have significant adverse impacts on infrastructure and property, human health, and local economies. This paper examines recent changes in extreme precipitation in the northeast United States. Daily station data from 58 stations missing less than 5% of days for the years 1979–2014 from the U.S. Historical Climatology Network were used to analyze extreme precipitation, defined as the top 1% of days with precipitation. A statistically significant (95% confidence level) increasing trend of the threshold for the top 1% of extreme precipitation events was found (0.3 mm yr−1). This increasing trend was due to both an increase in the frequency of extreme events and the magnitude of extreme events. Rainfall events ≥ 150 mm (24-h accumulation) increased in frequency from 6 events between 1979 and 1996 to 25 events between 1997 and 2014, a 317% increase. The annual daily maximum precipitation, or the highest recorded precipitation amount in a given year, increased by an average of 1.6 mm yr−1, a total increase of 58.0 mm. Decreasing trends in extreme precipitation were observed east of Lake Erie during the warm season. Increasing trends in extreme precipitation were most robust during the fall months of September, October, and November, and particularly at locations further inland. The analysis showed that increases in events that were tropical in nature, or associated with tropical moisture, led to the observed increase in extreme precipitation during the fall months.

 
more » « less
PAR ID:
10124300
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
American Meteorological Society
Date Published:
Journal Name:
Journal of Hydrometeorology
Volume:
20
Issue:
4
ISSN:
1525-755X
Page Range / eLocation ID:
p. 673-689
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Five extreme precipitation indicators were calculated on an annual basis for 1890 through 2013 and analysed to determine spatial patterns and temporal trends in the frequency and magnitude of observed extreme precipitation events in Kansas located in the central United States. Indicators were selected from the list of the World Meteorological Organization–Commission for Climatology (WMO–CCL) and the Research Programme on Climate Variability and Predictability (CLIVAR). The indicators included the number of days with precipitation greater than or equal to 10 mm/day (R10), maximum number of consecutive dry days (CDD; days with precipitation lower that 1 mm), maximum 5‐day precipitation total (R5D), and simple daily intensity index (SDII) which is the annual precipitation total divided by number of days with precipitation greater than or equal to 1 mm, and the fraction of annual total precipitation due to events exceeding the 95th percentile (R95T) based on the period 1961–1990. Positive trends in the results were found for a majority of stations for R10, R5D, SDII, and R95T. Consecutive dry days was the only index that had a negative trend at a majority of stations. Spatial pattern analysis indicates greater changes in frequencies and magnitudes for eastern Kansas. Results from this study highlight observed climate shifts in precipitation patterns with a tendency towards greater and more frequent extreme precipitation in eastern Kansas and a tendency towards drier conditions in western Kansas. These hydroclimatic adjustments can produce costly impacts in areas that include flood management, hydraulic structures, water availability throughout the year, agricultural production, ecosystems, and human health.

     
    more » « less
  2. Understanding historical trends in temperature, precipitation, and runoff is important but incomplete for developing adaptive measures to climate change to sustain fragile ecosystems in cold and arid regions, including the Balagaer River watershed on the Mongolian Plateau of northeast China. The objective of this study was to detect such trends in this watershed from 1959 to 2017. The detection was accomplished using a Mann-Kendall sudden change approach at annual and seasonal time scales. The results indicated that the abrupt changes in temperature preceded that in either runoff or precipitation; these abrupt changes occurred between 1970 and 2004. Significant (α = 0.05) warming trends were found at the minimum temperatures in spring (0.041 °C a−1), summer (0.037 °C a−1), fall (0.027 °C a−1), and winter (0.031 °C a−1). In contrast, significant decreasing trends were found in the precipitation (−1.27 mm a−1) and runoff (−0.069 mm a−1) in the summer. Marginally increasing trends were found in the precipitation in spring (0.18 mm a−1) and fall (0.032 mm a−1), whereas an insignificant decreasing trend was found in the runoffs in these two seasons. Both precipitation and runoff in the wet season exhibited a significant decreasing trend, whereas in the dry season, they exhibited a marginally increasing trend. Sudden changes in spring runoff and sudden rises in temperature are the main causes of sudden changes in basin rainfall. 
    more » « less
  3. Abstract

    Intensification of brown color in surface waters has been observed over several decades in many areas. We examined a 64‐yr daily record (1947–2010) of visual water color, a measure of chromophoric dissolved organic matter (CDOM), in the Mississippi River at Minneapolis, Minnesota. Although no monotonic trends in daily or mean annual color were evident, our analyses revealed trends in seasonal metrics, for example, mean winter color, on decadal scales related to changes in flow (hence climatic conditions). A pattern of high color (CDOM) in late spring and summer, corresponding with higher flow, was found across the period. Daily flow accounted for ~ 50% of the variance in color, and a lag of four days was found between peak responses of flow and color, supporting a CDOM source from wetlands in northern parts of the basin. The slope of the color‐flow relationship increased over the 64 yr, driven by increased CDOM flushing in late summer‐early fall. Based on trends in seasonally aggregated color and discharge, minimum and mean color and flow increased during winter over the 64 yr, potentially due to higher temperatures. Summer months did not show increases, but color became less variable. As a result, the color difference between summer and winter became smaller over the study period. During high flow events (ice‐out or high precipitation), some hysteretic color patterns were observed consistent with observations on other large rivers. Our results indicate that long‐term color (CDOM) trends in the Mississippi Headwaters reach are related to seasonally dominant changes in climatic conditions.

     
    more » « less
  4. Abstract

    The northeastern United States (NEUS) is a densely populated region with a number of major cities along the climatological storm track. Despite its economic and social importance, as well as the area’s vulnerability to flooding, there is significant uncertainty around future trends in extreme precipitation over the region. Here, we undertake a regional study of the projected changes in extreme precipitation over the NEUS through the end of the twenty-first century using an ensemble of high-resolution, dynamically downscaled simulations from the North American Coordinated Regional Climate Downscaling Experiment (NA-CORDEX) project. We find that extreme precipitation increases throughout the region, with the largest changes in coastal regions and smaller changes inland. These increases are seen throughout the year, although the smallest changes in extreme precipitation are seen in the summer, in contrast to earlier studies. The frequency of heavy precipitation also increases such that there are relatively fewer days with moderate precipitation and relatively more days with either no or strong precipitation. Averaged over the region, extreme precipitation increases by +3%–5% °C−1of local warming, with the largest fractional increases in southern and inland regions and occurring during the winter and spring seasons. This is lower than the +7% °C−1rate expected from thermodynamic considerations alone and suggests that dynamical changes damp the increases in extreme precipitation. These changes are qualitatively robust across ensemble members, although there is notable intermodel spread associated with models’ climate sensitivity and with changes in mean precipitation. Together, the NA-CORDEX simulations suggest that this densely populated region may require significant adaptation strategies to cope with the increase in extreme precipitation expected at the end of the next century.

    Significance Statement

    Observations show that the northeastern United States has already experienced increases in extreme precipitation, and prior modeling studies suggest that this trend is expected to continue through the end of the century. Using high-resolution climate model simulations, we find that coastal regions will experience large increases in extreme precipitation (+6.0–7.5 mm day−1), although there is significant intermodel spread in the trends’ spatial distribution and in their seasonality. Regionally averaged, extreme precipitation will increase at a rate of ∼2% decade−1. Our results also suggest that the frequency of extreme precipitation will increase, with the strongest storms doubling in frequency per degree of warming. These results, taken with earlier studies, provide guidance to aid in resiliency preparation and planning by regional stakeholders.

     
    more » « less
  5. Abstract

    We show a recent increasing trend in Vapor Pressure Deficit (VPD) over tropical South America in dry months with values well beyond the range of trends due to natural variability of the climate system defined in both the undisturbed Preindustrial climate and the climate over 850–1850 perturbed with natural external forcing. This trend is systematic in the southeast Amazon but driven by episodic droughts (2005, 2010, 2015) in the northwest, with the highest recoded VPD since 1979 for the 2015 drought. The univariant detection analysis shows that the observed increase in VPD cannot be explained by greenhouse-gas-induced (GHG) radiative warming alone. The bivariate attribution analysis demonstrates that forcing by elevated GHG levels and biomass burning aerosols are attributed as key causes for the observed VPD increase. We further show that There is a negative trend in evaporative fraction in the southeast Amazon, where lack of atmospheric moisture, reduced precipitation together with higher incoming solar radiation (~7% decade−1cloud-cover reduction) influences the partitioning of surface energy fluxes towards less evapotranspiration. The VPD increase combined with the decrease in evaporative fraction are the first indications of positive climate feedback mechanisms, which we show that will continue and intensify in the course of unfolding anthropogenic climate change.

     
    more » « less