skip to main content


Title: 3D collagen architecture regulates cell adhesion through degradability, thereby controlling metabolic and oxidative stress
Abstract The collagen-rich tumor microenvironment plays a critical role in directing the migration behavior of cancer cells. 3D collagen architectures with small pores have been shown to confine cells and induce aggressive collective migration, irrespective of matrix stiffness and density. However, it remains unclear how cells sense collagen architecture and transduce this information to initiate collective migration. Here, we tune collagen architecture and analyze its effect on four core cell-ECM interactions: cytoskeletal polymerization, adhesion, contractility, and matrix degradation. From this comprehensive analysis, we deduce that matrix architecture initially modulates cancer cell adhesion strength, and that this results from architecture-induced changes to matrix degradability. That is, architectures with smaller pores are less degradable, and degradability is required for cancer cell adhesion to 3D fibrilar collagen. The biochemical consequences of this 3D low-attachment state are similar to those induced by suspension culture, including metabolic and oxidative stress. One distinction from suspension culture is the induction of collagen catabolism that occurs in 3D low-attachment conditions. Cells also upregulate Snail1 and Notch signaling in response to 3D low-attachment, which suggests a mechanism for the emergence of collective behaviors.  more » « less
Award ID(s):
1651855
PAR ID:
10124611
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
Integrative Biology
ISSN:
1757-9708
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Collagen I is the primary extracellular matrix component of most solid tumors and influences metastatic progression. Collagen matrix engineering techniques are useful for understanding how this complex biomaterial regulates cancer cell behavior and for improving in vitro cancer models. Here, we establish an approach to tune collagen fibril architecture using PEG as an inert molecular crowding agent during gelation and cell embedding. We find that crowding produces matrices with tighter fibril networks that are less susceptible to proteinase mediated degradation, but does not significantly alter matrix stiffness. The resulting matrices have the effect of preventing cell spreading, confining cells, and reducing cell contractility. Matrix degradability and fibril length are identified as strong predictors of cell confinement. Further, the degree of confinement predicts whether breast cancer cells will ultimately undergo individual or collective behaviors. Highly confined breast cancer cells undergo morphogenesis to form either invasive networks reminiscent of aggressive tumors or gland and lobule structures reminiscent of normal breast epithelia. This morphological transition is accompanied by expression of cell–cell adhesion genes, including PECAM1 and ICAM1. Our study suggests that cell confinement, mediated by matrix architecture, is a design feature that tunes the transcriptional and morphogenic state of breast cancer cells. 
    more » « less
  2. Age is a leading risk factor for developing breast cancer. This may be in part to the time required for acquiring sufficient cancer mutations; however, stromal cells that accumulate in tissues and undergo senescence eventually develop a senescence-associated secretory phenotype that alters the microenvironment to promote cancer. Our focus is on mesenchymal stem cells (MSCs) – stromal cells recruited to tumors due to their natural tropism for inflammatory tissues; MSCs have been shown to enhance the metastatic potential of tumor cells through direct interactions or paracrine signaling within the tumor. In the tumor, MSCs can differentiate into carcinoma-associated fibroblasts that play a central role in tumor growth and matrix remodeling. We recently investigated the molecular and mechanical differences in pre- and post- senescent MSCs and how their interactions with MDA-MB-231 breast cancer cells contribute to malignancy. Our data show post-senescent MSCs are larger and less motile, with more homogeneous mechanical properties than pre-senescent MSCs. In-depth omics analysis revealed differentially regulated genes and peptides including factors related to inflammatory cytokines, cell adhesion to the extracellular matrix, and cytoskeletal regulation. A 3D co-culture model was used to assess the effects of pre- and post- senescent MSCs on collagen matrix remodeling. Although post-senescent MSCs were far less motile than pre-senescent MSCs and less contractile with the matrix, they profoundly altered matrix protein deposition and crosslinking, which resulted in local matrix stiffening effects. Post-senescent MSCs also induced an invasive breast cancer cell phenotype, characterized by increased proliferation and invasion of breast cancer cells. This invasive breast cancer cell behavior was further amplified when MDA-MB-231 was co-cultured with a mixture of pre- and post- senescent MSCs; this result was attributed to matrix remodeling and soluble factor secretion effects of post-senescent MSCs, which enhanced the migration of pre-senescent MSCs allowing them to form tracks in the collagen network for cancer cells to follow. Finally, molecular inhibitors targeting actomyosin contractility and adhesion were used to alter MSC interactions with breast cancer cells. Actin depolymerizing agent and focal adhesion kinase inhibitor were most efficient and completely able to block the effects of post-senescent MSCs on MDA-MB-231 invasion in collagen gels. This comprehensive approach can be used to identify molecular pathways regulating heterotypic interactions of post-senescent MSCs with other cells in the tumor. Furthermore, the local matrix stiffening effect of post-senescent MSCs may play a critical role in breast cancer progression. 
    more » « less
  3. Abstract

    Cells adapt and move due to chemical, physical, and mechanical cues from their microenvironment. It is therefore important to create materials that mimic human tissue physiology by surface chemistry, architecture, and dimensionality to control cells in biomedical settings. The impact of the environmental architecture is particularly relevant in the context of cancer cell metastasis, where cells migrate through small constrictions in their microenvironment to invade surrounding tissues. Here, a synthetic hydrogel scaffold with an interconnected, random, 3D microchannel network is presented that is functionalized with collagen to promote cell adhesion. It is shown that cancer cells can invade such scaffolds within days, and both the microarchitecture and stiffness of the hydrogel modulate cell invasion and nuclear dynamics of the cells. Specifically, it is found that cell migration through the microchannels is a function of hydrogel stiffness. In addition to this, it is shown that the hydrogel stiffness and confinement, influence the occurrence of nuclear envelope ruptures of cells. The tunable hydrogel microarchitecture and stiffness thus provide a novel tool to investigate cancer cell invasion as a function of the 3D microenvironment. Furthermore, the material provides a promising strategy to control cell positioning, migration, and cellular function in biological applications, such as tissue engineering.

     
    more » « less
  4. Abstract

    Fibroblasts are an abundant cell type in tumor microenvironments. Activated fibroblasts, known as carcinoma‐associated fibroblasts (CAFs), interact with cancer cells through biochemical signaling and render cancer cells proliferative, invasive, and resistant to therapeutics. Targeting CAFs–cancer cells interactions offers a strategy to block cancer progression. 2D and 3D co‐cultures of human mammary fibroblasts and triple negative breast cancer (TNBC) cells are used to investigate the impact of heterotypic cellular interactions on the proliferation of matrix invasion of TNBC cells. The results show that fibroblasts secreting a chemokine, CXCL12, significantly enhance proliferation of TNBC cells expressing the chemokine receptor, CXCR4. Disrupting this interaction with a receptor antagonist normalizes cancer cell proliferation to that of a co‐culture model lacking this signaling. When co‐culture spheroids are embedded in collagen, fibroblasts producing CXCL12 promote collagen invasion of TNBC cells. Although co‐cultures containing normal fibroblasts also lead to TNBC cell spreading into the matrix, a morphological analysis of cells and inhibition of chemokine‐receptor signaling shows that this spreading is due to the incompatibility of fibroblasts and cancer cells leading to the segregation of the two cell types from the spheroid.

     
    more » « less
  5. Rehfeldt, Florian (Ed.)

    Leader cells direct collective migration through sensing cues in their microenvironment to determine migration direction. The mechanism by which leader cells sense the mechanical cue of organized matrix architecture culminating in a mechanical response is not well defined. In this study, we investigated the effect of organized collagen matrix fibers on leader cell mechanics and demonstrate that leader cells protrude along aligned fibers resulting in an elongated phenotype of the entire cluster. Further, leader cells show increased mechanical interactions with their nearby matrix compared to follower cells, as evidenced by increased traction forces, increased and larger focal adhesions, and increased expression of integrin-α2. Together our results demonstrate changes in mechanical matrix cues drives changes in leader cell mechanoresponse that is required for directional collective migration. Our findings provide new insights into two fundamental components of carcinogenesis, namely invasion and metastasis.

     
    more » « less