We followed up the massive young stellar object S255-NIRS3 (= S255-IRS1b) during its recent accretion outburst event in the $K_{\rm s}$ band with Kanata/HONIR for four years after its burst and obtained a long-term light curve. This is the most complete near-infrared light curve of the S255-NIRS3 burst event that has ever been presented. The light curve showed a steep increase reaching a peak flux that was 3.4 mag brighter than the quiescent phase and then a relatively moderate year-scale fading until the last observation, similar to that of the accretion burst events such as EXors found in lower-mass young stellar objects. The behavior of the $K_{\rm s}$-band light curve is similar to that observed in 6.7 GHz class II methanol maser emission, with a sudden increase followed by moderate year-scale fading. However, the maser emission peaks appear 30–50 d earlier than that of the $K_{\rm s}$ band emission. The similarities confirmed that the origins of the maser emission and the $K_{\rm s}$-band continuum emission are common, as previously shown from other infrared and radio observations by Stecklum et al. (2016, Astronomer’s Telegram, 8732), Caratti o Garatti et al. (2017b, Nature Phys., 13, 276), and Moscadelli et al. (2017, A&A, 600, L8). However, the differences in energy transfer paths, such as the exciting/emitting/scattering structures, may cause the delay in the flux-peak dates.
more » « less- NSF-PAR ID:
- 10124663
- Publisher / Repository:
- Oxford University Press
- Date Published:
- Journal Name:
- Publications of the Astronomical Society of Japan
- ISSN:
- 0004-6264
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract Observed changes in protostellar brightness can be complicated to interpret. In our James Clerk Maxwell Telescope (JCMT) Transient Monitoring Survey, we discovered that a young binary protostar, HOPS 373, is undergoing a modest 30% brightness increase at 850 μ m, caused by a factor of 1.8–3.3 enhancement in the accretion rate. The initial burst occurred over a few months, with a sharp rise and then a shallower decay. A second rise occurred soon after the decay, and the source is still bright one year later. The mid-IR emission, the small-scale CO outflow mapped with ALMA, and the location of variable maser emission indicate that the variability is associated with the SW component. The near-IR and NEOWISE W1 and W2 emission is located along the blueshifted CO outflow, spatially offset by ∼3 to 4″ from the SW component. The K -band emission imaged by UKIRT shows a compact H 2 emission source at the edge of the outflow, with a tail tracing the outflow back to the source. The W1 emission, likely dominated by scattered light, brightens by 0.7 mag, consistent with expectations based on the submillimeter light curve. The signal of continuum variability in K band and W2 is masked by stable H 2 emission, as seen in our Gemini/GNIRS spectrum, and perhaps by CO emission. These differences in emission sources complicate IR searches for variability of the youngest protostars.more » « less
-
Abstract The Atacama Large Millimeter/submillimeter Array (ALMA) serendipitously detected H2O $J_{K_{\rm a}, K_{\rm c}} = 10_{2,9}$–93, 6 emission at 321 GHz in NGC 1052. This is the first submillimeter maser detection in a radio galaxy and the most luminous 321 GHz H2O maser known to-date with the isotropic luminosity of $1090\, L_{\odot }$. The line profile consists of a broad velocity component with FWHM = 208 ± 12 km s−1 straddling the systemic velocity and a narrow component with FWHM = 44 ± 3 km s−1 blueshifted by 160 km s−1. The profile is significantly different from the known 22 GHz 61, 6–52, 3 maser which shows a broad profile redshifted by 193 km s−1. The submillimeter maser is spatially unresolved with a synthesized beam of ${0{^{\prime \prime}_{.}}68} \times {0{^{\prime \prime}_{.}}56}$ and coincides with the continuum core position within 12 pc. These results indicate amplification of the continuum emission through high-temperature (>1000 K) and dense [n(H2O) > 104 cm−3] molecular gas in front of the core.
-
Abstract AT 2019azh is a H+He tidal disruption event (TDE) with one of the most extensive ultraviolet and optical data sets available to date. We present our photometric and spectroscopic observations of this event starting several weeks before and out to approximately 2 yr after the
g -band's peak brightness and combine them with public photometric data. This extensive data set robustly reveals a change in the light-curve slope and a possible bump in the rising light curve of a TDE for the first time, which may indicate more than one dominant emission mechanism contributing to the pre-peak light curve. Indeed, we find that theMOSFiT -derived parameters of AT 2019azh, which assume reprocessed accretion as the sole source of emission, are not entirely self-consistent. We further confirm the relation seen in previous TDEs whereby the redder emission peaks later than the bluer emission. The post-peak bolometric light curve of AT 2019azh is better described by an exponential decline than by the canonicalt −5/3(and in fact any) power-law decline. We find a possible mid-infrared excess around the peak optical luminosity, but cannot determine its origin. In addition, we provide the earliest measurements of the Hα emission-line evolution and find no significant time delay between the peak of theV -band light curve and that of the Hα luminosity. These results can be used to constrain future models of TDE line formation and emission mechanisms in general. More pre-peak 1–2 days cadence observations of TDEs are required to determine whether the characteristics observed here are common among TDEs. More importantly, detailed emission models are needed to fully exploit such observations for understanding the emission physics of TDEs. -
Abstract In 2019 September, a sudden flare of the 6.7 GHz methanol maser was observed toward the high-mass young stellar object (HMYSO) G24.33+0.14. This may represent the fourth detection of a transient mass accretion event in an HMYSO after S255IR NIRS3, NGC 6334I-MM1, and G358.93−0.03-MM1. G24.33+0.14 is unique among these sources as it clearly shows a repeating flare with an 8 yr interval. Using the Atacama Large Millimeter/submillimeter Array (ALMA), we observed the millimeter continuum and molecular lines toward G24.33+0.14 in the pre-flare phase in 2016 August (ALMA Cycle 3) and the mid-flare phase in 2019 September (ALMA Cycle 6). We identified three continuum sources in G24.33+0.14, and the brightest source, C1, which is closely associated with the 6.7 GHz maser emission, shows only a marginal increase in flux density with a flux ratio (Cycle 6$/$Cycle 3) of 1.16 ± 0.01, considering an additional absolute flux calibration uncertainty of $10\%$. We identified 26 transitions from 13 molecular species other than methanol, and they exhibit similar levels of flux differences with an average flux ratio of 1.12 ± 0.15. In contrast, eight methanol lines observed in Cycle 6 are brighter than those in Cycle 3 with an average flux ratio of 1.23 ± 0.13, and the higher excitation lines tend to show a larger flux increase. If this systematic increasing trend is real, it would suggest radiative heating close to the central HMYSO due to an accretion event which could expand the size of the emission region and/or change the excitation conditions. Given the low brightness temperatures and small flux changes, most of the methanol emission is likely to be predominantly thermal, except for the 229.759 GHz (8−1–70 E) line known as a class I methanol maser. The flux change in the millimeter continuum of G24.33+0.14 is smaller than in S255IR NIRS3 and NGC 6334I-MM1 but is comparable with that in G358.93−0.03-MM1, suggesting different amounts of accreted mass in these events.
-
ABSTRACT We present the results of a multiwavelength follow-up campaign for the luminous nuclear transient Gaia16aax, which was first identified in 2016 January. The transient is spatially consistent with the nucleus of an active galaxy at z = 0.25, hosting a black hole of mass ${\sim }6\times 10^8\, \mathrm{M}_\odot$. The nucleus brightened by more than 1 mag in the Gaia G band over a time-scale of less than 1 yr, before fading back to its pre-outburst state over the following 3 yr. The optical spectra of the source show broad Balmer lines similar to the ones present in a pre-outburst spectrum. During the outburst, the H α and H β emission lines develop a secondary peak. We also report on the discovery of two transients with similar light-curve evolution and spectra: Gaia16aka and Gaia16ajq. We consider possible scenarios to explain the observed outbursts. We exclude that the transient event could be caused by a microlensing event, variable dust absorption or a tidal encounter between a neutron star and a stellar mass black hole in the accretion disc. We consider variability in the accretion flow in the inner part of the disc, or a tidal disruption event of a star ${\ge } 1 \, \mathrm{M}_{\odot }$ by a rapidly spinning supermassive black hole as the most plausible scenarios. We note that the similarity between the light curves of the three Gaia transients may be a function of the Gaia alerts selection criteria.more » « less