skip to main content


Title: Estimating Potential Climate Change Effects on the Upper Neuse Watershed Water Balance Using the SWAT Model
Abstract

Climate change poses water resource challenges for many already water stressed watersheds throughout the world. One such watershed is the Upper Neuse Watershed in North Carolina, which serves as a water source for the large and growing Research Triangle Park region. The aim of this study was to quantify possible changes in the watershed’s water balance due to climate change. To do this, we used the Soil and Water Assessment Tool (SWAT) model forced with different climate scenarios for baseline, mid‐century, and end‐century time periods using five different downscaled General Circulation Models. Before running these scenarios, the SWAT model was calibrated and validated using daily streamflow records within the watershed. The study results suggest that, even under a mitigation scenario, precipitation will increase by 7.7% from the baseline to mid‐century time period and by 9.8% between the baseline and end‐century time period. Over the same periods, evapotranspiration (ET) would decrease by 5.5 and 7.6%, water yield would increase by 25.1% and 33.2%, and soil water would increase by 1.4% and 1.9%. Perhaps most importantly, the model results show, under a high emission scenario, large seasonal differences with ET estimated to decrease by up to 42% and water yield to increase by up to 157% in late summer and fall. Planning for the wetter predicted future and corresponding seasonal changes will be critical for mitigating the impacts of climate change on water resources.

 
more » « less
NSF-PAR ID:
10124718
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
JAWRA Journal of the American Water Resources Association
Volume:
56
Issue:
1
ISSN:
1093-474X
Page Range / eLocation ID:
p. 53-67
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The increase of tree canopy cover due to woody plant encroachment and tree plantations modifies both carbon and water dynamics. The tradeoffs between ecosystem net primary productivity (NPP) and water use with increasing tree cover in different climate conditions, particularly under future climate scenarios, are not well understood. Within the climate transition zone of the southern Great Plains, USA, we used the Soil and Water Assessment Tool+ (SWAT+) to investigate the combined impacts of increasing tree cover and climate change on carbon and water dynamics in three watersheds representing semiarid, subhumid, and humid climates. Model simulations incorporated two land use modifications (Baseline: existing tree cover; Forest +: increasing evergreen tree cover), in conjunction with two climate change projections (the RCP45 and the RCP85), spanning two time periods (historic: 1991-2020; future: 2070-2099). With climate change, the subhumid and humid watersheds exhibited a greater increase in evapotranspiration (ET) and a corresponding reduction in runoff compared to the semi-arid watershed, while the semi-arid and subhumid watersheds encountered pronounced losses in water availability for streams (>200 mm/year) due to increasing tree cover and climate change. With every 1 % increase in tree cover, both NPP and water use efficiency were projected to increase in all three watersheds under both climate change scenarios, with the subhumid watershed demonstrating the largest increases (>0.16 Mg/ha/year and 170 %, respectively). Increasing tree cover within grasslands, either through woody plant expansion or afforestation, boosts ecosystem NPP, particularly in subhumid regions. Nevertheless, this comes with a notable decrease in water resources, a concern made worse by future climate change. While afforestation offers the potential for greater NPP, it also brings heightened water scarcity concerns, highlighting the importance of tailoring carbon sequestration strategies within specific regions to mitigate unintended repercussions on water availability. 
    more » « less
  2. null (Ed.)
    Crop yield depends on multiple factors, including climate conditions, soil characteristics, and available water. The objective of this study was to evaluate the impact of projected temperature and precipitation changes on crop yields in the Monocacy River Watershed in the Mid-Atlantic United States based on climate change scenarios. The Soil and Water Assessment Tool (SWAT) was applied to simulate watershed hydrology and crop yield. To evaluate the effect of future climate projections, four global climate models (GCMs) and three representative concentration pathways (RCP 4.5, 6, and 8.5) were used in the SWAT model. According to all GCMs and RCPs, a warmer climate with a wetter Autumn and Spring and a drier late Summer season is anticipated by mid and late century in this region. To evaluate future management strategies, water budget and crop yields were assessed for two scenarios: current rainfed and adaptive irrigated conditions. Irrigation would improve corn yields during mid-century across all scenarios. However, prolonged irrigation would have a negative impact due to nutrients runoff on both corn and soybean yields compared to rainfed condition. Decision tree analysis indicated that corn and soybean yields are most influenced by soil moisture, temperature, and precipitation as well as the water management practice used (i.e., rainfed or irrigated). The computed values from the SWAT modeling can be used as guidelines for water resource managers in this watershed to plan for projected water shortages and manage crop yields based on projected climate change conditions. 
    more » « less
  3. The Gulf Coast watersheds in the United States contain some of the highest levels of biodiversity of all freshwater systems in North America. Developing environmental management policies to protect and preserve these ecosystems makes the study of the impacts of projected climate change on the future hydrologic cycle crucial. We used the Soil and Water Assessment Tool (SWAT) to estimate the potential hydrologic changes for the mid‐21st century (2050s) and the late 21st century (2080s) in the Mobile River, Apalachicola River, and Suwannee River watersheds in the Gulf Coast region of the United States. These estimates are based on downscaled future climate projections from 20 global circulation models (GCMs) under two representative concentration pathways (RCPs 4.5 and 8.5). SWAT models were calibrated and validated using the multi‐algorithm, genetically adaptive multi‐objective (AMALGAM) technique in a high‐performance computing (HPC) cluster. For the Gulf Coast watersheds, the climate is projected to be warmer and wetter. Projected changes in climatic variables are likely to bring large changes in both annual and seasonal hydrologic processes within these watersheds. We found substantial decreases in mean annual streamflow under RCP8.5 during the 2080s, with up to a 13.0% decrease projected for the Suwannee River watershed compared to the present day. Summer streamflow is projected to be substantially lower during the 2080s, with up to a 25.1% decrease projected for the Suwannee River watershed, during a time of high demand of water resources for agricultural, industrial, and ecosystem services. These hydrologic projections are expected to help in making better‐informed decisions for future water resources and ecosystem management in the Gulf Coast region.

     
    more » « less
  4. null (Ed.)
    Abstract. Despite clear signals of regional impacts of the recent severe drought inCalifornia, e.g., within Californian Central Valley groundwater storage and Sierra Nevada forests, our understanding of how this drought affected soil moisture and vegetation responses in lowland grasslands is limited. In order to better understand the resulting vulnerability of these landscapes to fire and ecosystem degradation, we aimed to generalize drought-induced changes in subsurface soil moisture and to explore its effects within grassland ecosystems of Southern California. We used a high-resolution in situ dataset of climate and soil moisture from two grassland sites (coastal and inland), alongside greenness (Normalized Difference Vegetation Index) data from Landsat imagery, to explore drought dynamics in environments with similar precipitation but contrasting evaporative demand over the period 2008–2019. We show that negative impacts of prolonged precipitation deficits on vegetation at the coastal site were buffered by fog and moderate temperatures. During the drought, the Santa Barbara region experienced an early onset of the dry season in mid-March instead of April, resulting in premature senescence of grasses by mid-April. We developed a parsimonious soil moisture balance model that captures dynamic vegetation–evapotranspiration feedbacks and analyzed the links between climate, soil moisture, and vegetation greenness over several years of simulated drought conditions, exploring the impacts of plausible climate change scenarios that reflect changes to precipitation amounts, their seasonal distribution, and evaporative demand. The redistribution of precipitation over a shortened rainy season highlighted a strong coupling of evapotranspiration to incoming precipitation at the coastal site, while the lower water-holding capacity of soils at the inland site resulted in additional drainage occurring under this scenario. The loss of spring rains due to a shortening of the rainy season also revealed a greater impact on the inland site, suggesting less resilience to low moisture at a time when plant development is about to start. The results also suggest that the coastal site would suffer disproportionally from extended dry periods, effectively driving these areas into more extreme drought than previously seen. These sensitivities suggest potential future increases in the risk of wildfires under climate change, as well as increased grassland ecosystem vulnerability. 
    more » « less
  5. RCMs produced at ~0.5° (available in the NA-CORDEX database esgf-node.ipsl.upmc.fr/search/cordex-ipsl/) address issues related to coarse resolution of GCMs (produced at 2° to 4°). Nevertheless, due to systematic and random model errors, bias correction is needed for regional study applications. However, an acceptable threshold for magnitude of bias correction that will not affect future RCM projection behavior is unknown. The goal of this study is to evaluate the implications of a bias correction technique (distribution mapping) for four GCM-RCM combinations for simulating regional precipitation and, subsequently, streamflow, surface runoff, and water yield when integrated into Soil and Water Assessment Tool (SWAT) applications for the Des Moines River basin (31,893 km²) in Iowa-Minnesota, U.S. The climate projections tested in this study are an ensemble of 2 GCMs (MPI-ESM-MR and GFDL-ESM2M) and 2 RCMs (WRF and RegCM4) for historical (1981-2005) and future (2030-2050) projections in the NA-CORDEX CMIP5 archive. The PRISM dataset was used for bias correction of GCM-RCM historical precipitation and for SWAT baseline simulations. We found bias correction improves historical total annual volumes for precipitation, seasonality, spatial distribution and mean error for all GCM-RCM combinations. However, improvement of correlation coefficient occurred only for the RegCM4 simulations. Monthly precipitation was overestimated for all raw models from January to April, and WRF overestimated monthly precipitation from January to August. The bias correction method improved monthly average precipitation for all four GCM-RCM combinations. The ability to detect occurrence of precipitation events was slightly better for the raw models, especially for the GCM-WRF combinations. Simulated historical streamflow was compared across 26 monitoring stations: Historical GCM-RCM outputs were unable to replicate PRISM KGE statistical results (KGE>0.5). However, the Pbias streamflow results matched the PRISM simulation for all bias-corrected models and for the raw GFDL-RegCM4 combination. For future scenarios there was no change in the annual trend, except for raw WRF models that estimated an increase of about 35% in annual precipitation. Seasonal variability remained the same, indicating wetter summers and drier winters. However, most models predicted an increase in monthly precipitation from January to March, and a reduction in June and July (except for raw WRF models). The impact on hydrological simulations based on future projected conditions was observed for surface runoff and water yield. Both variables were characterized by monthly volume overestimation; the raw WRF models predicted up to three times greater volume compared to the historical run. RegCM4 projected increased surface runoff and water yield for winter and spring by two times, and a slight volume reduction in summer and autumn. Meanwhile, the bias-corrected models showed changes in prediction signals: In some cases, raw models projected an increase in surface runoff and water yield but the bias-corrected models projected a reduction of these variables. These findings underscore the need for more extended research on bias correction and transposition between historical and future data. 
    more » « less