Game based learning is a new game play mechanism that the players explore various aspects of game play in a learning context designed by the instructor or the game designer. Nevertheless, general acceptance of game based learning as a new learning paradigm was deferred by a lack of well-controlled, large sample efficacy studies. To address the increasing need of cybersecurity workforce, this paper introduces a game based learning method for high school cybersecurity education. Purdue University Northwest launched GenCyber high school summer camps to about 200 high school students in Chicago metropolitan area. The survey conducted after the summer camp indicated that the game based learning for cybersecurity education was very effective in cybersecurity awareness training. Further analysis of survey data revealed that there is a gender difference in raising students’ interests in cybersecurity and computer science education using game based learning method.
more »
« less
Teaching Cybersecurity with Networked Robots
The paper presents RoboScape, a collaborative, networked robotics environment that makes key ideas in computer science accessible to groups of learners in informal learning spaces and K-12 classrooms. RoboScape is built on top of NetsBlox, an open-source, networked, visual programming environment based on Snap! that is specifically designed to introduce students to distributed computation and computer networking. RoboScape provides a twist on the state of the art of robotics learning platforms. First, a user's program controlling the robot runs in the browser and not on the robot. There is no need to download the program to the robot and hence, development and debugging become much easier. Second, the wireless communication between a student's program and the robot can be overheard by the programs of the other students. This makes cybersecurity an immediate need that students realize and can work to address. We have designed and delivered a cybersecurity summer camp to 24 students in grades between 7 and 12. The paper summarizes the technology behind RoboScape, the hands-on curriculum of the camp and the lessons learned.
more »
« less
- Award ID(s):
- 1644848
- PAR ID:
- 10124836
- Date Published:
- Journal Name:
- Proceedings of the 50th ACM Technical Symposium on Computer Science Education
- Page Range / eLocation ID:
- 885 to 891
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Cybersecurity workforce development is the key to protecting information and information systems, and yet more than 30% of companies are short on security expertise. To address this need, the current authors have developed four cybersecurity education games to teach social engineering, secure online behavior, cyber defense methods, and cybersecurity first principles. These games are intended to recruit the next generation cybersecurity workforce by developing an innovative cybersecurity curriculum and pedagogical methods to provide high school students with hands-on activities in a game-based learning environment. Purdue University Northwest (PNW) offered high school summer camps for 181 high school students in June of 2016 and June of 2017. Out of 181 high school participants, 107 were underrepresented minority students, including African Americans, Hispanics, Asians, and Native Americans. To evaluate the effectiveness of the cybersecurity education games, post-camp surveys were conducted with 154 camp participants. The survey results indicated that the games were very effective in cybersecurity awareness training. Furthermore, the cybersecurity education games were more effective for male students than female students in raising student interest in computer science and cybersecurity.more » « less
-
The core component of this study was a five-week summer camp that provided Arduino and robotics workshops and group activities to girls in grades 6-11. All activities were structured to ensure that learning took place in a constructivist environment. The camp was designed as a program to increase girls’, especially minorities’ participation in computer science and engineering. Key elements of camp participants’ STEM interest, self-efficacy, and contextual factors were measured both before and after the camp. With the collection and analyses of the survey data, our present study is to examine how constructivist learning environment may impact adolescent girls’ STEM learning and interests.more » « less
-
Robots are a popular and engaging educational tool for teaching computational thinking, but they often have significant costs and limitations for classroom use. Switching to a simulated environment can eliminate many of these difficulties. By also providing students with a block-based programming environment, the barrier to entry can be further reduced. This paper presents a networked virtual robotics platform designed to create an environment which is highly accessible for novice students and their teachers alike, along with components of a curriculum designed to teach computational thinking skills through robotics programming challenges, including autonomous challenges and in-class competitions. Students access this platform through an extension of the same web interface used for programming their robots, which allows students to collaborate on code and view a shared simulated virtual space. Previously, this virtual robotics platform was used only to facilitate distance education. This paper demonstrates its use in an in-person class during the Spring 2022 semester, illustrating the affordances of a virtual robotics environment for face-to-face learning contexts as well. Students' computational thinking skills were evaluated with assessments both before and after the class, along with surveys and interviews given to determine their opinions and outlooks regarding computer science. The results show that students had a significant improvement in both attitudes and aptitudes.more » « less
-
The number of African American females participating in cyber fields is significantly low. Science, technology, engineering, and mathematics (STEM) education requires a new approach to student engagement to increase African American female participation in cybersecurity. The most common approach to engaging more African American females in STEM is to provide students access to professional images or role models active in STEM; however, more is needed. More race-centered strategies beyond role modeling are necessary to attract and retain African American females in STEM. Research studies show that integrating personal experiences and making cultural connections can help improve student participation in STEM from underrepresented populations. In 2021, faculty in the Center for Cybersecurity Assurance and Policy at Morgan State University developed and implemented the GenCyber ‘‘Females are Cyber Stars’’ (FACS) Summer Camp. This initiative targeted female African American students in Baltimore public middle schools. Thirty-nine girls participated in the virtual program during the summer of 2021, and 25 girls engaged in the in-person program during the summer of 2022. The program’s goals were to increase female students’ interest in cybersecurity and exposure to the security of IoT (Internet of Things) devices in a smart home environment. The GenCyber FACS Summer Camp incorporated culturally responsive strategies to engage the participants in an inclusive and interactive setting. Participants were given pre- and post-program surveys to assess learning outcomes and examine the impact of using culturally responsive teaching strategies. The results showed that the girls reported increased knowledge and a gain in interest in cybersecurity and computing. This paper discusses the summer program and curriculum, culturally responsive teaching strategies deployed, student learning outcomes, and perceptions of cultural responsiveness assessed in the GenCyber FACS Summer Camp.more » « less
An official website of the United States government

