Thorpe analysis has been used to study turbulence in the atmosphere and ocean. It is clear that Thorpe analysis applied to individual soundings cannot be expected to give quantitatively reliable measurements of turbulence parameters because of the instantaneous nature of the measurement. A critical aspect of this analysis is the assumption of the linear relationship C = LO/LT between the Thorpe scale LT, derived from the sounding measurements, and the Ozmidov scale LO. It is the determination of LO that enables determination of the dissipation rate of turbulence kinetic energy ε. Single atmospheric and oceanic soundings cannot indicate either the source of turbulence or the stage of its evolution; different values of C are expected for different turbulence sources and stages of the turbulence evolution and thus cannot be expected to yield quantitatively reliable turbulence parameters from individual profiles. The variation of C with the stage of turbulence evolution is illustrated for direct numerical simulation (DNS) results for gravity wave breaking. Results from a DNS model of multiscale initiation and evolution of turbulence with a Reynolds number Re (which is defined using the vertical wavelength of the primary gravity wave and background buoyancy period as length and time scales, more »
- Award ID(s):
- 1758293
- Publication Date:
- NSF-PAR ID:
- 10124870
- Journal Name:
- Journal of Atmospheric and Oceanic Technology
- Volume:
- 36
- Issue:
- 11
- Page Range or eLocation-ID:
- p. 2247-2255
- ISSN:
- 0739-0572
- Publisher:
- American Meteorological Society
- Sponsoring Org:
- National Science Foundation
More Like this
-
We perform a direct numerical simulation (DNS) of interacting Kelvin–Helmholtz instabilities (KHI) that arise at a stratified shear layer where KH billow cores are misaligned or exhibit varying phases along their axes. Significant evidence of these dynamics in early laboratory shear-flow studies by Thorpe ( Geophys. Astrophys. Fluid Dyn. , vol. 34, 1985, pp. 175–199) and Thorpe ( J. Geophys. Res. , vol. 92, 1987, pp. 5231–5248), in observations of KH billow misalignments in tropospheric clouds (Thorpe, Q. J. R. Meteorol. Soc. , vol. 128, 2002, pp. 1529–1542) and in recent direct observations of such events in airglow and polar mesospheric cloud imaging in the upper mesosphere reveals that these dynamics are common. More importantly, the laboratory and mesospheric observations suggest that these dynamics lead to more rapid and more intense instabilities and turbulence than secondary convective instabilities in billow cores and secondary KHI in stratified braids between and around adjacent billows. To date, however, no simulations exploring the dynamics and energetics of interacting KH billows (apart from pairing) have been performed. Our DNS performed for Richardson number $Ri=0.10$ and Reynolds number $Re=5000$ demonstrates that KHI tubes and knots (i) comprise strong and complex vortex interactions accompanying misaligned KH billows,more »
-
We perform a direct numerical simulation (DNS) of interacting Kelvin–Helmholtz instabilities (KHI) that arise at a stratified shear layer where KH billow cores are misaligned or exhibit varying phases along their axes. Significant evidence of these dynamics in early laboratory shear-flow studies by Thorpe (Geophys. Astrophys. Fluid Dyn., vol. 34, 1985, pp. 175–199) and Thorpe (J. Geophys. Res., vol. 92, 1987, pp. 5231–5248), in observations of KH billow misalignments in tropospheric clouds (Thorpe, Q. J. R. Meteorol. Soc., vol. 128, 2002, pp. 1529–1542) and in recent direct observations of such events in airglow and polar mesospheric cloud imaging in the upper mesosphere reveals that these dynamics are common. More importantly, the laboratory and mesospheric observations suggest that these dynamics lead to more rapid and more intense instabilities and turbulence than secondary convective instabilities in billow cores and secondary KHI in stratified braids between and around adjacent billows. To date, however, no simulations exploring the dynamics and energetics of interacting KH billows (apart from pairing) have been performed. Our DNS performed for Richardson number Ri = 0.10 and Reynolds number Re = 5000 demonstrates that KHI tubes and knots (i) comprise strong and complex vortex interactions accompanying misaligned KH billows, (ii)more »
-
In the flamelet regime of turbulent premixed combustion the enhancement in the burning rates originates primarily from surface wrinkling. In this work we investigate the Reynolds number dependence of burning rates of spherical turbulent premixed methane/air flames in decaying isotropic turbulence with direct numerical simulations. Several simulations are performed by varying the Reynolds number, while keeping the Karlovitz number the same, and the temporal evolution of the flame surface is compared across cases by combining the probability density function of the radial distance of the flame surface from the origin with the surface density function formalism. Because the mean area of the wrinkled flame surface normalized by the area of a sphere with radius equal to the mean flame radius is proportional to the product of the turbulent flame brush thickness and peak surface density within the brush, the temporal evolution of the brush and peak surface density are investigated separately. The brush thickness is shown to scale with the integral scale of the flow, evolving due to decaying velocity fluctuations and stretch. When normalized by the integral scale, the wrinkling scale defined as the inverse of the peak surface density is shown to scale with Reynolds number across simulationsmore »
-
Direct numerical simulations (DNS) are performed to investigate the spatial evolution of flat-plate zero-pressure-gradient turbulent boundary layers over long streamwise domains ( ${>}300\delta _i$ , with $\delta _i$ the inflow boundary-layer thickness) at three different Mach numbers, $2.5$ , $4.9$ and $10.9$ , with the surface temperatures ranging from quasiadiabatic to highly cooled conditions. The settlement of turbulence statistics into a fully developed equilibrium state of the turbulent boundary layer has been carefully monitored, either based on the satisfaction of the von Kármán integral equation or by comparing runs with different inflow turbulence generation techniques. The generated DNS database is used to characterize the streamwise evolution of multiple important variables in the high-Mach-number, cold-wall regime, including the skin friction, the Reynolds analogy factor, the shape factor, the Reynolds stresses, and the fluctuating wall quantities. The data confirm the validity of many classic and newer compressibility transformations at moderately high Reynolds numbers (up to friction Reynolds number $Re_\tau \approx 1200$ ) and show that, with proper scaling, the sizes of the near-wall streaks and superstructures are insensitive to the Mach number and wall cooling conditions. The strong wall cooling in the hypersonic cold-wall case is found to cause a significant increasemore »
-
Abstract Direct numerical simulations are performed to compare the evolution of turbulent stratified shear layers with different density gradient profiles at a high Reynolds number. The density profiles include uniform stratification, two-layer hyperbolic tangent profile and a composite of these two profiles. All profiles have the same initial bulk Richardson number ( $$Ri_{b,0}$$ R i b , 0 ); however, the minimum gradient Richardson number and the distribution of density gradient across the shear layer are varied among the cases. The objective of the study is to provide a comparative analysis of the evolution of the shear layers in term of shear layer growth, turbulent kinetic energy as well as the mixing efficiency and its parameterization. The evolution of the shear layers in all cases shows the development of Kelvin–Helmholtz billows, the transition to turbulence by secondary instabilities followed by the decay of turbulence. Comparison among the cases reveals that the amount of turbulent mixing varies with the density gradient distribution inside the shear layer. The minimum gradient Richardson number and the initial bulk Richardson number do not correlate well with the integrated TKE production, dissipation and buoyancy flux. The bulk mixing efficiency for fixed $$Ri_{b,0}$$ R i b ,more »