skip to main content

Title: Direct Numerical Simulation Guidance for Thorpe Analysis to Obtain Quantitatively Reliable Turbulence Parameters
Abstract

Thorpe analysis has been used to study turbulence in the atmosphere and ocean. It is clear that Thorpe analysis applied to individual soundings cannot be expected to give quantitatively reliable measurements of turbulence parameters because of the instantaneous nature of the measurement. A critical aspect of this analysis is the assumption of the linear relationship C = LO/LT between the Thorpe scale LT, derived from the sounding measurements, and the Ozmidov scale LO. It is the determination of LO that enables determination of the dissipation rate of turbulence kinetic energy ε. Single atmospheric and oceanic soundings cannot indicate either the source of turbulence or the stage of its evolution; different values of C are expected for different turbulence sources and stages of the turbulence evolution and thus cannot be expected to yield quantitatively reliable turbulence parameters from individual profiles. The variation of C with the stage of turbulence evolution is illustrated for direct numerical simulation (DNS) results for gravity wave breaking. Results from a DNS model of multiscale initiation and evolution of turbulence with a Reynolds number Re (which is defined using the vertical wavelength of the primary gravity wave and background buoyancy period as length and time scales, more » respectively) of 100 000 are sampled as in sounding of the atmosphere and ocean, and various averaging of the sounding results indicates a convergence to a well-defined value of C, indicating that applying Thorpe analysis to atmospheric or oceanic soundings and averaging over a number of profiles gives more reliable turbulence determinations. The same averaging study is also carried out when the DNS-modeled turbulence is dominated by turbulence growing from the initial instabilities, when the turbulence is fully developed, when the modeled turbulence is decaying, and when the turbulence is in a still-later decaying stage. These individual cases converge to well defined values of C, but these values of C show a large variation resulting from the different stages of turbulence evolution. This study gives guidance as to the accuracy of Thorpe analysis of turbulence as a function of the number of profiles being averaged. It also suggests that the values of C in different environments likely depend on the dominant turbulence initiation mechanisms and on the Reynolds number of the environment.

« less
Authors:
 ;  ;  
Award ID(s):
1758293
Publication Date:
NSF-PAR ID:
10124870
Journal Name:
Journal of Atmospheric and Oceanic Technology
Volume:
36
Issue:
11
Page Range or eLocation-ID:
p. 2247-2255
ISSN:
0739-0572
Publisher:
American Meteorological Society
Sponsoring Org:
National Science Foundation
More Like this
  1. We perform a direct numerical simulation (DNS) of interacting Kelvin–Helmholtz instabilities (KHI) that arise at a stratified shear layer where KH billow cores are misaligned or exhibit varying phases along their axes. Significant evidence of these dynamics in early laboratory shear-flow studies by Thorpe ( Geophys. Astrophys. Fluid Dyn. , vol. 34, 1985, pp. 175–199) and Thorpe ( J. Geophys. Res. , vol. 92, 1987, pp. 5231–5248), in observations of KH billow misalignments in tropospheric clouds (Thorpe, Q. J. R. Meteorol. Soc. , vol. 128, 2002, pp. 1529–1542) and in recent direct observations of such events in airglow and polar mesospheric cloud imaging in the upper mesosphere reveals that these dynamics are common. More importantly, the laboratory and mesospheric observations suggest that these dynamics lead to more rapid and more intense instabilities and turbulence than secondary convective instabilities in billow cores and secondary KHI in stratified braids between and around adjacent billows. To date, however, no simulations exploring the dynamics and energetics of interacting KH billows (apart from pairing) have been performed. Our DNS performed for Richardson number $Ri=0.10$ and Reynolds number $Re=5000$ demonstrates that KHI tubes and knots (i) comprise strong and complex vortex interactions accompanying misaligned KH billows,more »(ii) accelerate the transition to turbulence relative to secondary instabilities of individual KH billows, (iii) yield significantly stronger turbulence than secondary KHI in billow braids and secondary convective instabilities in KHI billow cores and (iv) expand the suite of secondary instabilities previously recognized to contribute to KHI dynamics and breakdown to turbulence in realistic geophysical environments.« less
  2. We perform a direct numerical simulation (DNS) of interacting Kelvin–Helmholtz instabilities (KHI) that arise at a stratified shear layer where KH billow cores are misaligned or exhibit varying phases along their axes. Significant evidence of these dynamics in early laboratory shear-flow studies by Thorpe (Geophys. Astrophys. Fluid Dyn., vol. 34, 1985, pp. 175–199) and Thorpe (J. Geophys. Res., vol. 92, 1987, pp. 5231–5248), in observations of KH billow misalignments in tropospheric clouds (Thorpe, Q. J. R. Meteorol. Soc., vol. 128, 2002, pp. 1529–1542) and in recent direct observations of such events in airglow and polar mesospheric cloud imaging in the upper mesosphere reveals that these dynamics are common. More importantly, the laboratory and mesospheric observations suggest that these dynamics lead to more rapid and more intense instabilities and turbulence than secondary convective instabilities in billow cores and secondary KHI in stratified braids between and around adjacent billows. To date, however, no simulations exploring the dynamics and energetics of interacting KH billows (apart from pairing) have been performed. Our DNS performed for Richardson number Ri = 0.10 and Reynolds number Re = 5000 demonstrates that KHI tubes and knots (i) comprise strong and complex vortex interactions accompanying misaligned KH billows, (ii)more »accelerate the transition to turbulence relative to secondary instabilities of individual KH billows, (iii) yield significantly stronger turbulence than secondary KHI in billow braids and secondary convective instabilities in KHI billow cores and (iv) expand the suite of secondary instabilities previously recognized to contribute to KHI dynamics and breakdown to turbulence in realistic geophysical environments.« less
  3. In the flamelet regime of turbulent premixed combustion the enhancement in the burning rates originates primarily from surface wrinkling. In this work we investigate the Reynolds number dependence of burning rates of spherical turbulent premixed methane/air flames in decaying isotropic turbulence with direct numerical simulations. Several simulations are performed by varying the Reynolds number, while keeping the Karlovitz number the same, and the temporal evolution of the flame surface is compared across cases by combining the probability density function of the radial distance of the flame surface from the origin with the surface density function formalism. Because the mean area of the wrinkled flame surface normalized by the area of a sphere with radius equal to the mean flame radius is proportional to the product of the turbulent flame brush thickness and peak surface density within the brush, the temporal evolution of the brush and peak surface density are investigated separately. The brush thickness is shown to scale with the integral scale of the flow, evolving due to decaying velocity fluctuations and stretch. When normalized by the integral scale, the wrinkling scale defined as the inverse of the peak surface density is shown to scale with Reynolds number across simulationsmore »and as turbulence decays. As a result, the area ratio and the burning rate are found to increase as ${Re}_{\lambda }^{1.13}$ , in agreement with recent experiments on spherical turbulent premixed flames. We observe that the area ratio does not vary with turbulent intensity when holding the Reynolds number constant.« less
  4. Direct numerical simulations (DNS) are performed to investigate the spatial evolution of flat-plate zero-pressure-gradient turbulent boundary layers over long streamwise domains ( ${>}300\delta _i$ , with $\delta _i$ the inflow boundary-layer thickness) at three different Mach numbers, $2.5$ , $4.9$ and $10.9$ , with the surface temperatures ranging from quasiadiabatic to highly cooled conditions. The settlement of turbulence statistics into a fully developed equilibrium state of the turbulent boundary layer has been carefully monitored, either based on the satisfaction of the von Kármán integral equation or by comparing runs with different inflow turbulence generation techniques. The generated DNS database is used to characterize the streamwise evolution of multiple important variables in the high-Mach-number, cold-wall regime, including the skin friction, the Reynolds analogy factor, the shape factor, the Reynolds stresses, and the fluctuating wall quantities. The data confirm the validity of many classic and newer compressibility transformations at moderately high Reynolds numbers (up to friction Reynolds number $Re_\tau \approx 1200$ ) and show that, with proper scaling, the sizes of the near-wall streaks and superstructures are insensitive to the Mach number and wall cooling conditions. The strong wall cooling in the hypersonic cold-wall case is found to cause a significant increasemore »in the size of the near-wall turbulence eddies (relative to the boundary-layer thickness), which leads to a reduced-scale separation between the large and small turbulence scales, and in turn to a lack of an outer peak in the spanwise spectra of the streamwise velocity in the logarithmic region.« less
  5. Abstract Direct numerical simulations are performed to compare the evolution of turbulent stratified shear layers with different density gradient profiles at a high Reynolds number. The density profiles include uniform stratification, two-layer hyperbolic tangent profile and a composite of these two profiles. All profiles have the same initial bulk Richardson number ( $$Ri_{b,0}$$ R i b , 0 ); however, the minimum gradient Richardson number and the distribution of density gradient across the shear layer are varied among the cases. The objective of the study is to provide a comparative analysis of the evolution of the shear layers in term of shear layer growth, turbulent kinetic energy as well as the mixing efficiency and its parameterization. The evolution of the shear layers in all cases shows the development of Kelvin–Helmholtz billows, the transition to turbulence by secondary instabilities followed by the decay of turbulence. Comparison among the cases reveals that the amount of turbulent mixing varies with the density gradient distribution inside the shear layer. The minimum gradient Richardson number and the initial bulk Richardson number do not correlate well with the integrated TKE production, dissipation and buoyancy flux. The bulk mixing efficiency for fixed $$Ri_{b,0}$$ R i b ,more »0 is found to be highest in the case with two-layer density profile and lowest in the case with uniform stratification. However, the parameterizations of the flux coefficient based on buoyancy Reynolds number and the ratio of Ozmidov and Ellison scales show similar scaling in all cases.« less