skip to main content


Title: Students' gendered perceptions of mathematics in middle grades single‐sex and coeducational classrooms
Abstract

With the introduction of single‐sex classroom settings in coeducational public schools, there is an ongoing debate as to whether single‐sex education may reduce or reinforce traditional stereotypes and gender roles. In this article we present findings from a study that investigated the extent to which mathematics is perceived as a gendered domain among adolescent students enrolled in single‐sex classes and coeducational classes. Further we analyzed the relationships between student characteristics, class‐type, and teacher variables on students' perceptions of gender in mathematics. Findings from this study challenge the traditional view of mathematics as a male domain. Female participants more frequently considered mathematics to be a female domain than the male participants. Male participants, on the other hand, typically did not stereotype the mathematics as a gendered domain. Results from this study do not indicate, for girls at least, that participation in single‐sex classes results in a greater propensity to stereotype mathematics as a gendered domain than would be the case in coeducational classes. This study contributes to the evolving discourse and understanding of adolescents' gendered attitudes and beliefs towards mathematics—especially in light of stereotyped assertions that have a bearing on efforts to promote the learning of mathematics and science.

 
more » « less
NSF-PAR ID:
10125336
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
School Science and Mathematics
Volume:
119
Issue:
7
ISSN:
0036-6803
Page Range / eLocation ID:
p. 417-427
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Background/Context: After-school programs that focus on integrating computer programming and mathematics in authentic environments are seldomly accessible to students from culturally and linguistically diverse backgrounds, particularly bilingual Latina students in rural contexts. Providing a context that broadens Latina students’ participation in mathematics and computer programming requires educators to carefully examine how verbal and nonverbal language is used to interact and to position students as they learn new concepts in middle school. This is also an important stage for adolescents because they are likely to make decisions about their future careers in STEM. Having access to discourse and teaching practices that invite students to participate in mathematics and computer programming affords them opportunities to engage with these fields. Purpose/Focus of Study: This case study analyzes how small-group interactions mediated the positionings of Cindy, a bilingual Latina, as she learned binary numbers in an after-school program that integrated computer programming and mathematics (CPM). Setting: The Advancing Out-of-School Learning in Mathematics and Engineering (AOLME) program was held in a rural bilingual (Spanish and English) middle school in the Southwest. The after-school program was designed to provide experiences for primarily Latinx students to learn how to integrate mathematics with computer programming using Raspberry Pi and Python as a platform. Our case study explores how Cindy was positioned as she interacted with two undergraduate engineering students who served as facilitators while learning binary numbers with a group of three middle school students. Research Design: This single intrinsic case focused on exploring how small-group interactions among four students mediated Cindy’s positionings as she learned binary numbers through her participation in AOLME. Data sources included twelve 90-minute video sessions and Cindy’s journal and curriculum binder. Video logs were created, and transcripts were coded to describe verbal and nonverbal interactions among the facilitators and Cindy. Analysis of select episodes was conducted using systemic functional linguistics (SFL), specifically language modality, to identify how positioning took place. These episodes and positioning analysis describe how Cindy, with others, navigated the process of learning binary numbers under the stereotype that female students are not as good at mathematics as male students. Findings: From our analysis, three themes that emerged from the data portray Cindy’s experiences learning binary numbers. The major themes are: (1) Cindy’s struggle to reveal her understanding of binary numbers in a competitive context, (2) Cindy’s use of “fake it until you make it” to hide her cognitive dissonance, and (3) the use of Spanish and peers’ support to resolve Cindy’s understanding of binary numbers. The positioning patterns observed help us learn how, when Cindy’s bilingualism was viewed and promoted as an asset, this social context worked as a generative axis that addressed the challenges of learning binary numbers. The contrasting episodes highlight the facilitators’ productive teaching strategies and relations that nurtured Cindy’s social and intellectual participation in CPM. Conclusions/Recommendations: Cindy’s case demonstrates how the facilitator’s teaching, and participants’ interactions and discourse practices contributed to her qualitatively different positionings while she learned binary numbers, and how she persevered in this process. Analysis of communication acts supported our understanding of how Cindy’s positionings underpinned the discourse; how the facilitators’ and students’ discourse formed, shaped, or shifted Cindy’s positioning; and how discourse was larger than gender storylines that went beyond classroom interactions. Cindy’s case reveals the danger of placing students in “struggle” instead of a “productive struggle.” The findings illustrated that when Cindy was placed in struggle when confronting responding moves by the facilitator, her “safe” reaction was hiding and avoiding. In contrast, we also learned about the importance of empathetic, nurturing supporting responses that encourage students’ productive struggle to do better. We invite instructors to notice students’ hiding or avoiding and consider Cindy’s case. Furthermore, we recommend that teachers notice their choice of language because this is important in terms of positioning students. We also highlight Cindy’s agency as she chose to take up her friend’s suggestion to “fake it” rather than give up. 
    more » « less
  2. The veterinary medical workforce is increasingly female; occupational feminization often transfers stereotypes associated with the predominant gender onto the profession. It is unknown whether within veterinary medicine a feminized public image is a possible contributor to the reduction in male applicants to training programs. The influence of stereotypically gendered messaging on how male and female undergraduate students perceive veterinary medicine was investigated in 482 undergraduate students enrolled in five introductory or second-level biology courses. Two short videos introducing the field of veterinary medicine were developed with imagery and language selected to emphasize either stereotypic feminine ( communal) or masculine ( agentic) aspects of the field. Participant groups were randomly assigned one of the two videos (feminine/communal or masculine/agentic) or no video (no exposure). An outcome survey elicited impressions of the field of veterinary medicine and gathered demographic data. There was a significant linear trend of condition on perception of the profession as feminine or masculine and on perception of the activities of a veterinarian as feminine/communal or masculine/agentic. Female participants were significantly more likely to agree that someone of their gender would be valued in the profession. Male participants reported significantly higher self-efficacy scores for performing the tasks of a veterinarian when they viewed the feminine stereotype video. These results demonstrate that gendered perceptions of the field can be manipulated. Intentional gendered messaging should be further explored as one strategy to broaden the talent pool in the workforce by attracting men back to the field. 
    more » « less
  3. Intimate Partner Violence (IPV) is a pervasive public health crisis that impacts individuals across the gender spectrum. Traditionally, IPV is conceptualized through a gendered lens, with men as the perpetrators and women as the victims. The current study explored the association between perpetrator/victim sex, prosecutor gender role attitudes, and prosecutorial decision-making in a case of alleged IPV. We hypothesized that prosecutors with more traditional gender role attitudes would be more lenient, and this effect to be exacerbated in cases involving a female perpetrator. Criminal prosecutors across the United States ( N = 94) completed the Male Role Norms Inventory—Revised and read case materials describing the alleged IPV between a heterosexual couple (e.g., arrest report, medical records). The victim/perpetrator sex was manipulated to involve either a female- (male victim) or male- (female victim) perpetrated IPV case. Results indicate that gender role attitudes were not associated with prosecutorial decision-making. However, prosecutors perceived the violence as more serious and the perpetrator as more likely to reoffend when the perpetrator was male; further, they attributed more blame to the female victim. An interaction between perpetrator sex and prosecutor gender role attitudes indicates those with more traditional beliefs were more likely to blame the female (rather than male) victim. These data suggest extralegal factors related to the perpetrator (i.e., perpetrator sex), rather than prosecutor individual differences (i.e., gender role attitudes), are associated with prosecutor discretionary decision-making. In tandem with real-world disparities in the prosecution of IPV based on perpetrator sex, the current research stresses the importance of exploring a diversity of factors that account for these observed differences.

     
    more » « less
  4. Objective Historically, numerous studies have supported a male advantage in math. While more recent literature has shown that the gender gap is either decreasing or non-significant, a gender difference remains for higher level math (high school and college) (Hyde et. al. 1990; Casey et. al. 1995). It is known that both cognitive and non-cognitive factors influence math performance. There is little evidence for gender differences in working memory (Miller & Bichsel, 2004), which is a key predictor for mathematics. There is, however, evidence for gender differences in the non-cognitive domain, including math anxiety, with females having higher levels (Miller & Bichsel, 2004; Goetz, et. al. 2013). This study evaluates gender differences in both standardized and everyday math performances, and the way that cognitive and non-cognitive factors impact math. The study is focused on a very understudied group with high levels of math difficulty, namely community college students. We expected to find gender differences in math, and expect these to be in part accounted for by gender differences in strong mathematical predictors, particularly non-cognitive factors. Participants and Methods Participants included 94 community college students enrolled in their first math class (60 female; 34 male). Participants were administered the Kaufman Test of Educational Achievement – 3rd edition (KTEA3): Math Computation (MC) and Math Concepts Application (MCA) subtests, as well as an original Everyday Math (EM) measure which assessed their math ability in the context of common uses for math (e.g., financial and health numeracy). Additional measures included math anxiety, self-efficacy, and confidence. Finally, measures of complex span working memory tasks were administered to assess verbal and spatial working memory. Analyses were performed using correlation and regression to examine relationships between the cognitive and non-cognitive variables and standardized and everyday math measures. Results Correlations showed that all cognitive and non-cognitive variables are significantly correlated with all three math measures (all p < .05). There were no significant gender differences for any of the math measures, nor the working memory, or non-cognitive measures. Regression showed that across all three math outcomes, math anxiety and verbal working memory are significantly predictive of math performance. Overall R2 values were significant (range 27% to 37%, all p < .001). Working memory and math anxiety were unique predictors in all three regressions (all p < .05), but other non-cognitive variables such as self-efficacy did not show unique prediction (all p > .05). Conclusions There was no evidence for gender differences on any studied variable. This stands in contrast to prior studies, although few studies have included community college students. On the other hand, both cognitive and non-cognitive factors were complimentary in the prediction of math outcomes, which is consistent with prior work. Among non-cognitive predictors, math anxiety was particularly prominent. This study clarifies prior conflicting work regarding gender differences, and highlights the role of both math anxiety and working memory as relevant for multiple math outcomes. 
    more » « less
  5. Abstract

    Gender stereotypes are harmful for girls’ enrollment and performance in science and mathematics. So far, less is known about children’s and adolescents’ stereotypes regarding technology and engineering. In the current study, participants’ (N = 1,206, girlsn = 623; 5–17-years-old,M = 8.63,SD = 2.81) gender stereotypes for each of the STEM (science, technology, engineering, and mathematics) domains were assessed along with the relation between these stereotypes and a peer selection task in a STEM context. Participants reported beliefs that boys are usually more skilled than are girls in the domains of engineering and technology; however, participants did not report gender differences in ability/performance in science and mathematics. Responses to the stereotype measures in favor of one’s in-group were greater for younger participants than older participants for both boys and girls. Perceptions that boys are usually better than girls at science were related to a greater likelihood of selecting a boy for help with a science question. These findings document the importance of domain specificity, even within STEM, in attempts to measure and challenge gender stereotypes in childhood and adolescence.

     
    more » « less