skip to main content

Title: The Influence of Lifting Condensation Level on Low-Level Outflow and Rotation in Simulated Supercell Thunderstorms

This paper reports on results of idealized numerical simulations testing the influence of low-level humidity, and thus lifting condensation level (LCL), on the morphology and evolution of low-level rotation in supercell thunderstorms. Previous studies have shown that the LCL can influence outflow buoyancy, which can in turn affect generation and stretching of near-surface vertical vorticity. A less explored hypothesis is tested: that the LCL affects the relative positioning of near-surface circulation and the overlying mesocyclone, thus influencing the dynamic lifting and intensification of near-surface vertical vorticity. To test this hypothesis, a set of three base-state thermodynamic profiles with varying LCLs are implemented and compared over a variety of low-level wind profiles. The thermodynamic properties of the simulations are sensitive to variations in the LCL, with higher LCLs contributing to more negatively buoyant cold pools. These outflow characteristics allow for a more forward propagation of near-surface circulation relative to the midlevel mesocyclone. When the mid- and low-level mesocyclones become aligned with appreciable near-surface circulation, favorable dynamic updraft forcing is able to stretch and intensify this rotation. The strength of the vertical vorticity generated ultimately depends on other interrelated factors, including the amount of near-surface circulation generated within the cold pool and the buoyancy of storm outflow. However, these simulations suggest that mesocyclone alignment with near-surface circulation is modulated by the ambient LCL, and is a necessary condition for the strengthening of near-surface vertical vorticity. This alignment is also sensitive to the low-level wind profile, meaning that the LCL most favorable for the formation of intense vorticity may change based on ambient low-level shear properties.

more » « less
Author(s) / Creator(s):
Publisher / Repository:
American Meteorological Society
Date Published:
Journal Name:
Journal of the Atmospheric Sciences
Page Range / eLocation ID:
p. 1349-1372
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Previous work found that cold pools in ordinary convection are more sensitive to the microphysics scheme when the lifting condensation level (LCL) is higher owing to a greater evaporation potential, which magnifies microphysical uncertainties. In the current study, we explore whether the same reasoning can be applied to supercellular cold pools. To do this, four perturbed-microphysics ensembles are run, with each using an environment with a different LCL. Similar to ordinary convection, the sensitivity of supercellular cold pools to the microphysics increases with higher LCLs, though the physical reasoning for this increase in sensitivity differs from a previous study. Using buoyancy budgets along parcel trajectories that terminate in the cold pool, we find that negative buoyancy generated by microphysical cooling is partially countered by a decrease in environmental potential temperatures as the parcel descends. This partial erosion of negative buoyancy as parcels descend is most pronounced in the low-LCL storms, which have steeper vertical profiles of environmental potential temperature in the lower atmosphere. When this erosion is accounted for, the strength of the strongest cold pools in the low-LCL ensemble is reduced, resulting in a narrower distribution of cold pool strengths. This narrower distribution is indicative of reduced sensitivity to the microphysics. These results suggest that supercell behavior and supercell hazards (e.g., tornadoes) may be more predictable in low-LCL environments.

    Significance Statement

    Thunderstorms typically produce “pools” of cold air beneath them owing in part to the evaporation of rain and melting of ice produced by the storm. Past work has found that in computer simulations of thunderstorms, the cold pools that form beneath thunderstorms are sensitive to how rain and ice are modeled in the simulation. In this study, we show that in the strongest thunderstorms that are capable of producing tornadoes, this sensitivity is reduced when the humidity in the lowest few kilometers above the surface is increased. Exploring why the sensitivity is reduced when the humidity increases provides a deeper understanding of the relationship between humidity and cold pool strength, which is important for severe storm forecasting.

    more » « less
  2. Abstract

    Supercell thunderstorms develop low-level rotation via tilting of environmental horizontal vorticity (ωh) by the updraft. This rotation induces dynamic lifting that can stretch near-surface vertical vorticity into a tornado. Low-level updraft rotation is generally thought to scale with 0–500 m storm-relative helicity (SRH): the combination of storm-relative flow, |SRF|, |ωh|, and cosϕ(whereϕis the angle betweenSRFandωh). It is unclear how much influence each component of SRH has in intensifying the low-level mesocyclone. This study surveys these three components using self-organizing maps (SOMs) to distill 15 906 proximity soundings for observed right-moving supercells. Statistical analyses reveal the component most highly correlated to SRH and to streamwise vorticity (ωs) in the observed profiles is |ωh|. Furthermore, |ωh| and |SRF| are themselves highly correlated due to their shared dependence on the hodograph length. The representative profiles produced by the SOMs were combined with a common thermodynamic profile to initialize quasi-realistic supercells in a cloud model. The simulations reveal that, across a range of real-world profiles, intense low-level mesocyclones are most closely linked toωhandSRF, while the angle between them appears to be mostly inconsequential.

    Significance Statement

    About three-fourths of all tornadoes are produced by rotating thunderstorms (supercells). When the part of the storm near cloud base (approximately 1 km above the ground) rotates more strongly, the chance of a tornado dramatically increases. The goal of this study is to identify the simplest characteristic(s) of the environmental wind profile that can be used to forecast the likelihood of strong cloud-base rotation. This study concludes that the most important ingredients for storm rotation are the magnitudes of the horizontal vertical wind shear between the surface and 500 m and the storm inflow wind, irrespective of their relative directions. This finding may lead to improved operational identification of environments favoring tornado formation.

    more » « less
  3. Abstract

    The development and intensification of low-level mesocyclones in supercell thunderstorms have often been attributed, at least in part, to augmented streamwise vorticity generated baroclinically in the forward flank of supercells. However, the ambient streamwise vorticity of the environment (often quantified via storm-relative helicity), especially near the ground, is particularly skillful at discriminating between nontornadic and tornadic supercells. This study investigates whether the origins of the inflow air into supercell low-level mesocyclones, both horizontally and vertically, can help explain the dynamical role of environmental versus storm-generated vorticity in the development of low-level mesocyclone rotation. Simulations of supercells, initialized with wind profiles common to supercell environments observed in nature, show that the air bound for the low-level mesocyclone primarily originates from the ambient environment (rather than from along the forward flank) and from very close to the ground, often in the lowest 200–400 m of the atmosphere. Given that the near-ground environmental air comprises the bulk of the inflow into low-level mesocyclones, this likely explains the forecast skill of environmental streamwise vorticity in the lowest few hundred meters of the atmosphere. The low-level mesocyclone does not appear to require much augmentation from the development of additional horizontal vorticity in the forward flank. Instead, the dominant contributor to vertical vorticity within the low-level mesocyclone is from the environmental horizontal vorticity. This study provides further context to the ongoing discussion regarding the development of rotation within supercell low-level mesocyclones.

    Significance Statement

    Supercell thunderstorms produce the majority of tornadoes, and a defining characteristic of supercells is their rotating updraft, known as the “mesocyclone.” When the mesocyclone is stronger at lower altitudes, the likelihood of tornadoes increases. The purpose of this study is to understand if the rotation of the mesocyclone in supercells is due to horizontal spin present in the ambient environment or whether additional horizontal spin generated by the storm itself primarily drives this rotation. Our results suggest that inflow air into supercells and low-level mesocyclone rotation are mainly due to the properties of the environmental inflow air, especially near the ground. This hopefully provides further context to how our community views the development of low-level mesocyclones in supercells.

    more » « less
  4. Abstract

    This study analyzes aboveground thermodynamic observations in three tornadic supercells obtained via swarms of small balloon-borne sondes acting aspseudo-Lagrangiandrifters; the storm-relative winds draw the sondes through the precipitation, outflow, and baroclinic zones, which are believed to play key roles in tornado formation. Three-dimensional thermodynamic analyses are produced from the in situ observations. The coldest air is found at the lowest analysis levels, where virtual potential temperature deficits of 2–5 K are observed. Air parcels within the forward-flank outflow are inferred from their equivalent potential temperatures to have descended only a few hundred meters or less, whereas parcels within the rear-flank outflow are inferred to have downward excursions of 1–2 km. Additionally, the parcels following paths toward the low-level mesocyclone pass through horizontal buoyancy gradients that are strongest in the lowest 750 m and estimated to be capable of baroclinically generating horizontal vorticity having a magnitude of 6–10 × 10−3s−1. A substantial component of the baroclinically generated vorticity is initially crosswise, though the vorticity subsequently could become streamwise given the leftward bending of the airstream in which the vorticity is generated. The baroclinically generated vorticity could contribute to tornado formation upon being tilted upward and stretched near the surface beneath a strong, dynamically forced updraft.

    Significance Statement

    Swarms of balloon-borne probes are used to produce the first-ever, three-dimensional mappings of temperature from in situ observations within supercell storms (rotating storms with high tornado potential). Temperature has a strong influence on the buoyancy of air, and horizontal variations of buoyancy generate spin about a horizontal axis. Buoyancy is one of the primary drivers of upward and downward motions in thunderstorms, and in supercell storms, horizontally oriented spin can be tipped into the vertical and amplified by certain arrangements of upward and downward motions. Unfortunately, the long-standing lack of temperature observations has hampered scientists’ ability to evaluate computer simulations and the tornadogenesis theories derived from them. We find that significant spin could be generated by the horizontal buoyancy variations sampled by the probes.

    more » « less
  5. Abstract Sufficient low-level storm-relative flow is a necessary ingredient for sustained supercell thunderstorms and is connected to supercell updraft width. Assuming a supercell exists, the role of low-level storm-relative flow in regulating supercells’ low-level mesocyclone intensity is less clear. One possibility considered in this article is that storm-relative flow controls mesocyclone and tornado width via its modulation of overall updraft extent. This hypothesis relies on a previously postulated positive correspondence between updraft width, mesocyclone width, and tornado width. An alternative hypothesis is that mesocyclone characteristics are primarily regulated by horizontal streamwise vorticity irrespective of storm-relative flow. A matrix of supercell simulations was analyzed to address the aforementioned hypotheses, wherein horizontal streamwise vorticity and storm-relative flow were independently varied. Among these simulations, mesocyclone width and intensity were strongly correlated with horizontal streamwise vorticity, and comparatively weakly correlated with storm-relative flow, supporting the second hypothesis. Accompanying theory and trajectory analysis offers the physical explanation that, when storm-relative flow is large and updrafts are wide, vertically tilted streamwise vorticity is projected over a wider area but with a lesser average magnitude than when these parameters are small. These factors partially offset one another, degrading the correspondence of storm-relative flow with updraft circulation and rotational velocity, which are the mesocyclone attributes most closely tied to tornadoes. These results refute the previously purported connections between updraft width, mesocyclone width, and tornado width, and emphasize horizontal streamwise vorticity as the primary control on low-level mesocyclones in sustained supercells. Significance Statement The intensity of a supercell thunderstorm’s low-level rotation, known as the “mesocyclone,” is thought to influence tornado likelihood. Mesocyclone intensity depends on many environmental attributes that are often correlated with one another and difficult to disentangle. This study used a large body of numerical simulations to investigate the influence of the speed of low-level air entering a supercell (storm-relative flow), the horizontal spin of the ambient air entering the thunderstorm (streamwise vorticity), and the width of the storm’s updraft. Our results suggest that the rotation of the mesocyclone in supercells is primarily influenced by streamwise vorticity, with comparatively weaker connections to storm-relative flow and updraft width. These findings provide important clarification in our scientific understanding of how a storm’s environment influences the rate of rotation of its mesocyclone, and the associated tornado threat. 
    more » « less