We study the effect of magnification in the Dark Energy Survey Year 3 analysis of galaxy clustering and galaxy–galaxy lensing, using two different lens samples: a sample of luminous red galaxies, redMaGiC, and a sample with a redshift-dependent magnitude limit, MagLim. We account for the effect of magnification on both the flux and size selection of galaxies, accounting for systematic effects using the Balrog image simulations. We estimate the impact of magnification on the galaxy clustering and galaxy–galaxy lensing cosmology analysis, finding it to be a significant systematic for the MagLim sample. We show cosmological constraints from the galaxy clustering autocorrelation and galaxy–galaxy lensing signal with different magnifications priors, finding broad consistency in cosmological parameters in ΛCDM and wCDM. However, when magnification bias amplitude is allowed to be free, we find the two-point correlation functions prefer a different amplitude to the fiducial input derived from the image simulations. We validate the magnification analysis by comparing the cross-clustering between lens bins with the prediction from the baseline analysis, which uses only the autocorrelation of the lens bins, indicating that systematics other than magnification may be the cause of the discrepancy. We show that adding the cross-clustering between lens redshift bins to the fit significantly improves the constraints on lens magnification parameters and allows uninformative priors to be used on magnification coefficients, without any loss of constraining power or prior volume concerns.
We investigate the sensitivity to the effects of lensing magnification on large-scale structure analyses combining photometric cosmic shear and galaxy clustering data (i.e. the now commonly called ‘3 × 2-point’ analysis). Using a Fisher matrix bias formalism, we disentangle the contribution to the bias on cosmological parameters caused by ignoring the effects of magnification in a theory fit from individual elements in the data vector, for Stage-III and Stage-IV surveys. We show that the removal of elements of the data vectors that are dominated by magnification does not guarantee a reduction in the cosmological bias due to the magnification signal, but can instead increase the sensitivity to magnification. We find that the most sensitive elements of the data vector come from the shear-clustering cross-correlations, particularly between the highest redshift shear bin and any lower redshift lens sample, and that the parameters ΩM, $S_8=\sigma _8\sqrt{\Omega _\mathrm{ M}/0.3}$, and w0 show the most significant biases for both survey models. Our forecasts predict that current analyses are not significantly biased by magnification, but this bias will become highly significant with the continued increase of statistical power in the near future. We therefore conclude that future surveys should measure and model the magnification as part of their flagship ‘3 × 2-point’ analysis.
more » « less- PAR ID:
- 10125759
- Publisher / Repository:
- Oxford University Press
- Date Published:
- Journal Name:
- Monthly Notices of the Royal Astronomical Society
- Volume:
- 491
- Issue:
- 2
- ISSN:
- 0035-8711
- Page Range / eLocation ID:
- p. 1746-1758
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
ABSTRACT -
ABSTRACT China Space Station Telescope (CSST) is a forthcoming powerful Stage IV space-based optical survey equipment. It is expected to explore a number of important cosmological problems in extremely high precision. In this work, we focus on investigating the constraints on neutrino mass and other cosmological parameters under the model of cold dark matter with a constant equation of state of dark energy (wCDM), using the mock data from the CSST photometric galaxy clustering and cosmic shear surveys (i.e. 3 × 2 pt). The systematics from galaxy bias, photometric redshift uncertainties, intrinsic alignment, shear calibration, baryonic feedback, non-linear, and instrumental effects are also included in the analysis. We generate the mock data based on the COSMOS catalogue considering the instrumental and observational effects of the CSST, and make use of the Markov chain Monte Carlo method to perform the constraints. Comparing to the results from current similar measurements, we find that CSST 3 × 2 pt surveys can improve the constraints on the cosmological parameters by one order of magnitude at least. We can obtain an upper limit for the sum of neutrino mass Σmν ≲ 0.36 (0.56) eV at 68 per cent (95 per cent) confidence level (CL), and Σmν ≲ 0.23 (0.29) eV at 68 per cent (95 per cent) CL if we ignore the baryonic effect, which is comparable to the Planck results and much better than the current photometric surveys. This indicates that the CSST photometric surveys can provide stringent constraints on the neutrino mass and other cosmological parameters, and the results also can be further improved by including data from other kinds of CSST cosmological surveys.
-
ABSTRACT Recent works have shown that weak lensing magnification must be included in upcoming large-scale structure analyses, such as for the Vera C. Rubin Observatory Legacy Survey of Space and Time (LSST), to avoid biasing the cosmological results. In this work, we investigate whether including magnification has a positive impact on the precision of the cosmological constraints, as well as being necessary to avoid bias. We forecast this using an LSST mock catalogue and a halo model to calculate the galaxy power spectra. We find that including magnification has little effect on the precision of the cosmological parameter constraints for an LSST galaxy clustering analysis, where the halo model parameters are additionally constrained by the galaxy luminosity function. In particular, we find that for the LSST gold sample (i < 25.3) including weak lensing magnification only improves the galaxy clustering constraint on Ωm by a factor of 1.03, and when using a very deep LSST mock sample (i < 26.5) by a factor of 1.3. Since magnification predominantly contributes to the clustering measurement and provides similar information to that of cosmic shear, this improvement would be reduced for a combined galaxy clustering and shear analysis. We also confirm that not modelling weak lensing magnification will catastrophically bias the cosmological results from LSST. Magnification must therefore be included in LSST large-scale structure analyses even though it does not significantly enhance the precision of the cosmological constraints.
-
In cosmological analyses it is common to combine different types of measurement from the same survey. In this paper we use simulated DES Y3 and LSST Y1 data to explore differences in sensitivity to intrinsic alignments (IA) between cosmic shear and galaxy-galaxy lensing. We generate mock shear, galaxy-galaxy lensing and galaxy clustering data, contaminated with a range of IA scenarios. Using a simple 2-parameter IA model (NLA) in a DES Y3 like analysis, we show that the galaxy-galaxy lensing + galaxy clustering combination (2x2pt) is significantly more robust to IA mismodelling than cosmic shear. IA scenarios that produce up to 5sigma biases for shear are seen to be unbiased at the level of 1sigma for 2x2pt. We demonstrate that this robustness can be largely attributed to the redshift separation in galaxy-galaxy lensing, which provides a cleaner separation of lensing and IA contributions. We identify secondary factors which may also contribute, including the possibility of cancellation of higher-order IA terms in 2x2pt and differences in sensitivity to physical scales. Unfortunately this does not typically correspond to equally effective self-calibration in a 3x2pt analysis of the same data, which can show significant biases driven by the cosmic shear part of the data vector. If we increase the precision of our mock analyses to a level roughly equivalent to LSST Y1, we find a similar pattern, with considerably more bias in a cosmic shear analysis than a 2x2pt one, and significant bias in a joint analysis of the two. Our findings suggest that IA model error can manifest itself as internal tension between 1x2 and 2x2 data vectors. We thus propose that such tension (or the lack thereof) can be employed as a test of model sufficiency or insufficiency when choosing a fiducial IA model, alongside other data-driven methods.more » « less
-
ABSTRACT In addition to the intrinsic clustering of galaxies themselves, the spatial distribution of galaxies observed in surveys is modulated by the presence of weak lensing due to matter in the foreground. This effect, known as magnification bias, is a significant contaminant to analyses of galaxy-lensing cross-correlations and must be carefully modelled. We present a method to estimate the magnification bias in spectroscopically confirmed galaxy samples based on finite differences of galaxy catalogues while marginalizing over errors due to finite step size. We use our estimator to measure the magnification biases of the CMASS and LOWZ samples in the SDSS BOSS galaxy survey, analytically taking into account the dependence on galaxy shape for fibre and PSF magnitudes, finding αCMASS = 2.71 ± 0.02 and αLOWZ = 2.45 ± 0.02 and quantify modelling uncertainties in these measurements. Finally, we quantify the redshift evolution of the magnification bias within the CMASS and LOWZ samples, finding a difference of up to a factor of three between the lower and upper redshift bounds for the former. We discuss how to account for this evolution in modelling and its interaction with commonly applied redshift-dependent weights. Our method should be readily applicable to upcoming surveys and we make our code publicly available as part of this work.