skip to main content


Title: Sales Forecasting, Polls vs Swarms
Sales forecasts are critical to businesses of all sizes, enabling teams to project revenue, prioritize marketing, plan distribution, and scale inventory levels. To date, however, sales forecasts of new products have been shown to be highly inaccurate, due in large part to the lack of data about each new product and the subjective judgements required to compensate for this lack of data. The present study explores product sales forecasting performed by human groups and compares the accuracy of group forecasts generated by traditional polls to those made using Artificial Swarm Intelligence (ASI), a technique which has been shown to amplify the forecasting accuracy of groups in a wide range of fields. In collaboration with a major fashion retailer and a major fashion publisher, groups of fashion-conscious millennial women predicted the relative sales volumes of eight sweaters promoted during the 2018 holiday season, first by ranking each sweater’s sales in an online poll, and then using Swarm software to form an ASI system. The Swarm-based forecast was significantly more accurate than the poll. In fact, the top four sweaters ranked by swarm sold 23.7% more units, or $600,000 worth of sweaters during the target period, as compared to the top four sweaters as ranked by survey, (p = 0.0497), indicating that swarms of small consumer groups can be used to forecast sales with significantly higher accuracy than a traditional poll.  more » « less
Award ID(s):
1840937
NSF-PAR ID:
10125839
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
SSRN Electronic Journal
ISSN:
1556-5068
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In the natural world, Swarm Intelligence (SI) is a well-known phenomenon that enables groups of organisms to make collective decisions with significantly greater accuracy than the individuals could do on their own. In recent years, a new AI technology called Artificial Swarm Intelligence (ASI) has been developed that enables similar benefits for human teams. It works by connecting networked teams into real-time systems modeled on natural swarms. Referred to commonly as “human swarms” or “hive minds,” these closed-loop systems have been shown to amplify group performance across a wide range of tasks, from financial forecasting to strategic decision-making. The current study explores the ability of ASI technology to amplify the IQ of small teams. Five small teams answered a series of questions from a commonly used intelligence test known as the Raven’s Standard Progressive Matrices (RSPM) test. Participants took the test first as individuals, and then as groups moderated by swarming algorithms (i.e. “swarms”). The average individual achieved 53.7% correct, while the average swarm achieved 76.7% correct, corresponding to an estimated IQ increase of 14 points. When the individual responses were aggregated by majority vote, the groups scored 56.7% correct, still 12 IQ points less than the real-time swarming method. 
    more » « less
  2. Assimilation of remote-sensing products of sea ice thickness (SIT) into sea ice–ocean models has been shown to improve the quality of sea ice forecasts. Key open questions are whether assimilation of lower-level data products such as radar freeboard (RFB) can further improve model performance and what performance gains can be achieved through joint assimilation of these data products in combination with a snow depth product. The Arctic Mission Benefit Analysis system was developed to address this type of question. Using the quantitative network design (QND) approach, the system can evaluate, in a mathematically rigorous fashion, the observational constraints imposed by individual and groups of data products. We demonstrate the approach by presenting assessments of the observation impact (added value) of different Earth observation (EO) products in terms of the uncertainty reduction in a 4-week forecast of sea ice volume (SIV) and snow volume (SNV) for three regions along the Northern Sea Route in May 2015 using a coupled model of the sea ice–ocean system, specifically the Max Planck Institute Ocean Model. We assess seven satellite products: three real products and four hypothetical products. The real products are monthly SIT, sea ice freeboard (SIFB), and RFB, all derived from CryoSat-2 by the AlfredWegener Institute. These are complemented by two hypothetical monthly laser freeboard (LFB) products with low and high accuracy, as well as two hypothetical monthly snow depth products with low and high accuracy. On the basis of the per-pixel uncertainty ranges provided with the CryoSat-2 SIT, SIFB, and RFB products, the SIT and RFB achieve a much better performance for SIV than the SIFB product. For SNV, the performance of SIT is only low, the performance of SIFB is higher and the performance of RFB is yet higher. A hypothetical LFB product with low accuracy (20 cm uncertainty) falls between SIFB and RFB in performance for both SIV and SNV. A reduction in the uncertainty of the LFB product to 2 cm yields a significant increase in performance. Combining either of the SIT or freeboard products with a hypothetical snow depth product achieves a significant performance increase. The uncertainty in the snow product matters: a higher-accuracy product achieves an extra performance gain. Providing spatial and temporal uncertainty correlations with the EO products would be beneficial not only for QND assessments, but also for assimilation of the products. 
    more » « less
  3. Swarm Intelligence (SI) is a biological phenomenon in which groups of organisms amplify their combined intelligence by forming real-time systems. It has been studied for decades in fish schools, bird flocks, and bee swarms. Recent advances in networking and AI technologies have enabled distributed human groups to form closed-loop systems modeled after natural swarms. The process is referred to as Artificial Swarm Intelligence (ASI) and has been shown to significantly amplify group intelligence. The present research applies ASI technology to the field of medicine, exploring if small groups of networked radiologists can improve their diagnostic accuracy when reviewing chest X-rays for the presence of pneumonia by “thinking together” as an ASI system. Data was collected for individual diagnoses as well as for diagnoses made by the group working as a real-time ASI system. Diagnoses were also collected using a state-of-the-art deep learning system developed by Stanford University School of Medicine. Results showed that a small group of networked radiologists, when working as a real-time closed-loop ASI system, was significantly more accurate than the individuals on their own, reducing errors by 33%, as well as significantly more accurate (22%) than a state- of-the-art software-only solution using deep learning. 
    more » « less
  4. Abstract Background

    Beginning May 7, 2022, multiple nations reported an unprecedented surge in monkeypox cases. Unlike past outbreaks, differences in affected populations, transmission mode, and clinical characteristics have been noted. With the existing uncertainties of the outbreak, real-time short-term forecasting can guide and evaluate the effectiveness of public health measures.

    Methods

    We obtained publicly available data on confirmed weekly cases of monkeypox at the global level and for seven countries (with the highest burden of disease at the time this study was initiated) from the Our World in Data (OWID) GitHub repository and CDC website. We generated short-term forecasts of new cases of monkeypox across the study areas using an ensemble n-sub-epidemic modeling framework based on weekly cases using 10-week calibration periods. We report and assess the weekly forecasts with quantified uncertainty from the top-ranked, second-ranked, and ensemble sub-epidemic models. Overall, we conducted 324 weekly sequential 4-week ahead forecasts across the models from the week of July 28th, 2022, to the week of October 13th, 2022.

    Results

    The last 10 of 12 forecasting periods (starting the week of August 11th, 2022) show either a plateauing or declining trend of monkeypox cases for all models and areas of study. According to our latest 4-week ahead forecast from the top-ranked model, a total of 6232 (95% PI 487.8, 12,468.0) cases could be added globally from the week of 10/20/2022 to the week of 11/10/2022. At the country level, the top-ranked model predicts that the USA will report the highest cumulative number of new cases for the 4-week forecasts (median based on OWID data: 1806 (95% PI 0.0, 5544.5)). The top-ranked and weighted ensemble models outperformed all other models in short-term forecasts.

    Conclusions

    Our top-ranked model consistently predicted a decreasing trend in monkeypox cases on the global and country-specific scale during the last ten sequential forecasting periods. Our findings reflect the potential impact of increased immunity, and behavioral modification among high-risk populations.

     
    more » « less
  5. Many social species amplify their decision-making accuracy by deliberating in real-time closed-loop systems. Known as Swarm Intelligence (SI), this natural process has been studied extensively in schools of fish, flocks of birds, and swarms of bees. The present research looks at human groups and tests their ability to make financial forecasts by working together in systems modeled after natural swarms. Specifically, groups of financial traders were tasked with forecasting the weekly trends of four common market indices (SPX, GLD, GDX, and Crude Oil) over a period of 19 consecutive weeks. Results showed that individual forecasters, who averaged 56.6% accuracy when predicting weekly trends on their own, amplified their accuracy to 77.0% when predicting together as real-time swarms. This reflects a 36% increase in forecasting accuracy and shows high statistical significance (p<0.001). Further, if investments had been made according to these swarm-based forecasts, the group would have netted a 13.3% return on investment (ROI) over the 19 weeks, compared to the individual’s 0.7% ROI. This suggests that enabling groups of traders to form real-time systems online, governed by swarm intelligence algorithms, has the potential to significantly increase the accuracy and ROI of financial forecasts. 
    more » « less