skip to main content

Title: The Atlantis Bank Gabbro Massif, Southwest Indian Ridge
This paper presents the first detailed geologic map of in situ lower ocean crust; the product of six surveys of Atlantis Bank on the SW Indian Ridge. This combined with major and trace element compositions of primary magmatic phases in 99 seafloor gabbros shows there are both significant vertical and ridge-parallel variations in crustal composition and thickness, but a continuity of the basic stratigraphy parallel to spreading. This stratigraphy is not that of magmatic sedimentation in a large crustal magma chamber. Instead, it is the product of dynamic accretion where the lower crust formed by episodic intrusion, large-scale upward migration of interstitial melt due to crystal mush compaction, and continuous tectonic extension accompanied by hyper- and sub-solidus, crystal-plastic deformation. Five crossings of the gabbro-peridotite contact along the transform wall show that massive mantle peridotite is intruded by cumulate residues of moderately to highly evolved magmas, few of which could be even close to equilibrium with a primary mantle magma. This contact then does not represent the crust-mantle boundary as envisaged in the ophiolite analog for ocean crust. The residues of the magmas parental to the shallow crust must also lie beneath the center of the complex. This, and the nearly more » complete absence of dunites in peridotites from the transform wall, shows that melt transport through the shallow lithosphere was largely restricted to the central region of the paleo-ridge segment. There is almost no evidence for a melt lens or high-level storage of primitive melt in the upper 1500 m of Atlantis Bank. Thus, the composition of associated mid-ocean ridge basalt appears largely controlled by fractional crystallization of primitive cumulates at depth, near or at the base of the crust, modified somewhat by melt-rock reaction during transport through the overlying cumulate pile to the seafloor. Inliers of the dike-gabbro transition show that the uppermost gabbros crystallized at depth and were then emplaced upward, as they cooled, into the zone of diking. ODP and IODP drilling along the center of the gabbro massif also found few primitive gabbros that could have been in equilibrium with the original overlying lavas. Evidence of large-scale upward, permeable transport of interstitial melt through the gabbros is ubiquitous. Thus, post-cumulus processes, including extensive reaction, dissolution, and re-precipitation within the cumulate pile have obscured nearly all evidence of earlier primitive origins. We suggest that many of the gabbros may have started as primitive cumulates but were hybridized and transformed by later, migrating melts to evolved compositions, even as they ascended to higher levels, while new primitive cumulates were emplaced near the base of the crust. Mass balance for a likely parental melt intruded from the mantle to form the crust, however, requires that such primitive cumulates must exist at depth beneath Atlantis Bank at the center of the magmatic complex. The Atlantis Bank Gabbro Massif accreted by direct magma intrusion into the lower crust, followed by upward diapiric flow, first as a crystal mush, then by solid-state, crystal-plastic deformation, and finally by detachment faulting to the sea floor. The strongly asymmetric spreading to the south, parallel to the transform, was due to fault capture, with the bounding faults on the northern rift valley wall cut off by the detachment fault, which extended across the zone of intrusion causing rapid migration of the plate boundary to the north. « less
Authors:
; ; ;
Award ID(s):
1637130
Publication Date:
NSF-PAR ID:
10125977
Journal Name:
Progress in earth and planetary science
Volume:
6
Issue:
64
Page Range or eLocation-ID:
1-70
ISSN:
2197-4284
Sponsoring Org:
National Science Foundation
More Like this
  1. International Ocean Discovery Program (IODP) Expedition 360 was the first leg of Phase I of the SloMo (shorthand for “The nature of the lower crust and Moho at slower spreading ridges”) Project, a multiphase drilling program that proposes to drill through the outermost of the global seismic velocity discontinuities, the Mohorovičić seismic discontinuity (Moho). The Moho corresponds to a compressional wave velocity increase, typically at ~7 km beneath the oceans, and has generally been regarded as the boundary between crust and mantle. An alternative model, that the Moho is a hydration front in the mantle, has recently gained credence upon the discovery of abundant partially serpentinized peridotite on the seafloor and on the walls of fracture zones, such as at Atlantis Bank, an 11–13 My old elevated oceanic core complex massif adjacent to the Atlantis II Transform on the Southwest Indian Ridge. Hole U1473A was drilled on the summit of Atlantis Bank during Expedition 360, 1–2 km away from two previous Ocean Drilling Program (ODP) holes: Hole 735B (drilled during ODP Leg 118 in 1987 and ODP Leg 176 in 1997) and Hole 1105A (drilled during ODP Leg 179 in 1998). A mantle peridotite/gabbro contact has been traced by dredgingmore »and diving along the transform wall for 40 km. The contact is located at ~4200 m depth on the transform wall below the drill sites but shoals considerably 20 km to the south, where it was observed in outcrop at 2563 m depth. Moho reflections, however, have been found at ~5–6 km beneath Atlantis Bank and <4 km beneath the transform wall, leading to the suggestion that the seismic discontinuity may not represent the crust/mantle boundary but rather an alteration (serpentinization) front. This in turn raises the interesting possibility that methanogenesis associated with serpentinization could support a whole new planetary biosphere deep in the oceanic basement. The SloMo Project seeks to test these hypotheses at Atlantis Bank and evaluate the processes of natural carbon sequestration in the lower crust and uppermost mantle. A primary objective of SloMo Leg 1 was to explore the lateral variability of the stratigraphy established in Hole 735B. Comparison of Hole U1473A with Holes 735B and 1105A allows us to demonstrate a continuity of process and complex interplay of magmatic accretion and steady-state detachment faulting over a time period of ~128 ky. Preliminary assessment indicates that these sections of lower crust are constructed by repeated cycles of intrusion, represented in Hole U1473A by approximately three upwardly differentiated hundreds of meter–scale bodies of olivine gabbro broadly similar to those encountered in the deeper parts of Hole 735B. Specific aims of Expedition 360 focused on gaining an understanding of how magmatism and tectonism interact in accommodating seafloor spreading, how magnetic reversal boundaries are expressed in the lower crust, assessing the role of the lower crust and shallow mantle in the global carbon cycle, and constraining the extent and nature of life at deep levels within the ocean lithosphere.« less
  2. International Ocean Discovery Program (IODP) Expedition 360 was the first leg of Phase I of the SloMo (shorthand for “The nature of the lower crust and Moho at slower spreading ridges”) Project, a multiphase drilling program that proposes to drill through the out- ermost of the global seismic velocity discontinuities, the Mohor- ovičić seismic discontinuity (Moho). The Moho corresponds to a compressional wave velocity increase, typically at ~7 km beneath the oceans, and has generally been regarded as the boundary be- tween crust and mantle. An alternative model, that the Moho is a hydration front in the mantle, has recently gained credence upon the discovery of abundant partially serpentinized peridotite on the seafloor and on the walls of fracture zones, such as at Atlantis Bank, an 11–13 My old elevated oceanic core complex massif adjacent to the Atlantis II Transform on the Southwest Indian Ridge. Hole U1473A was drilled on the summit of Atlantis Bank during Expedition 360, 1–2 km away from two previous Ocean Drilling Program (ODP) holes: Hole 735B (drilled during ODP Leg 118 in 1987 and ODP Leg 176 in 1997) and Hole 1105A (drilled during ODP Leg 179 in 1998). A mantle peridotite/gabbro contact has beenmore »traced by dredging and diving along the transform wall for 40 km. The contact is located at ~4200 m depth on the transform wall be- low the drill sites but shoals considerably 20 km to the south, where it was observed in outcrop at 2563 m depth. Moho reflections, how- ever, have been found at ~5–6 km beneath Atlantis Bank and <4 km beneath the transform wall, leading to the suggestion that the seis- mic discontinuity may not represent the crust/mantle boundary but rather an alteration (serpentinization) front. This in turn raises the interesting possibility that methanogenesis associated with ser- pentinization could support a whole new planetary biosphere deep in the oceanic basement. The SloMo Project seeks to test these hy- potheses at Atlantis Bank and evaluate the processes of natural car- bon sequestration in the lower crust and uppermost mantle. A primary objective of SloMo Leg 1 was to explore the lateral variability of the stratigraphy established in Hole 735B. Comparison of Hole U1473A with Holes 735B and 1105A allows us to demon- strate a continuity of process and complex interplay of magmatic ac- cretion and steady-state detachment faulting over a time period of ~128 ky. Preliminary assessment indicates that these sections of lower crust are constructed by repeated cycles of intrusion, repre- sented in Hole U1473A by approximately three upwardly differenti- ated hundreds of meter–scale bodies of olivine gabbro broadly similar to those encountered in the deeper parts of Hole 735B. Specific aims of Expedition 360 focused on gaining an under- standing of how magmatism and tectonism interact in accommo- dating seafloor spreading, how magnetic reversal boundaries are expressed in the lower crust, assessing the role of the lower crust and shallow mantle in the global carbon cycle, and constraining the extent and nature of life at deep levels within the ocean lithosphere.« less
  3. International Ocean Discovery Program (IODP) Expedition 360 was the first leg of Phase I of the SloMo (shorthand for “The nature of the lower crust and Moho at slower spreading ridges”) Project, a multiphase drilling program that proposes to drill through the outermost of the global seismic velocity discontinuities, the Mohorovičić seismic discontinuity (Moho). The Moho corresponds to a compressional wave velocity increase, typically at ~7 km beneath the oceans, and has generally been regarded as the boundary between crust and mantle. An alternative model, that the Moho is a hydration front in the mantle, has recently gained credence upon the discovery of abundant partially serpentinized peridotite on the seafloor and on the walls of fracture zones, such as at Atlantis Bank, an 11–13 My old elevated oceanic core complex massif adjacent to the Atlantis II Transform on the Southwest Indian Ridge. Hole U1473A was drilled on the summit of Atlantis Bank during IODP Expedition 360, 1–2 km away from two previous Ocean Drilling Program (ODP) holes: Hole 735B (drilled during ODP Leg 118 in 1987 and ODP Leg 176 in 1997) and Hole 1105A (drilled during ODP Leg 179 in 1998). A mantle peridotite/gabbro contact has been traced bymore »dredging and diving along the transform wall for 40 km. The contact is located at ~4200 m depth at the drill sites but shoals considerably 20 km to the south, where it was observed in outcrop at 2563 m depth. Moho reflections have, however, been found at ~5–6 km beneath Atlantis Bank and <4 km beneath the transform wall, leading to the suggestion that the seismic discontinuity may not represent the crust/mantle boundary but rather an alteration (serpentinization) front. This then raises the interesting possibility that a whole new planetary biosphere may thrive due to methanogenesis associated with serpentinization. The SloMo Project seeks to test these two hypotheses at Atlantis Bank and evaluate carbon sequestration in the lower crust and uppermost mantle. A primary objective of SloMo Leg 1 was to explore the lateral variability of the stratigraphy established in Hole 735B. Comparison of Hole U1473A with Holes 735B and 1105A allows us to demonstrate a continuity of process and complex interplay of magmatic accretion and steady-state detachment faulting over a time period of ~128 ky. Preliminary assessment indicates that these sections of lower crust are constructed by repeated cycles of intrusion, represented in Hole U1473A by approximately three upwardly differentiated hundreds of meter–scale bodies of olivine gabbro broadly similar to those encountered in the deeper parts of Hole 735B. Specific aims of Expedition 360 focused on gaining an understanding of how magmatism and tectonism interact in accommodating seafloor spreading, how magnetic reversal boundaries are expressed in the lower crust, assessing the role of the lower crust and shallow mantle in the global carbon cycle, and constraining the extent and nature of life at deep levels within the ocean lithosphere.« less
  4. Abstract The architecture of lower oceanic crust at slow- and ultraslow-spreading ridge is diverse, yet the mechanisms that produce this diversity are not well understood. Particularly, the 660-km2 gabbroic massif at Atlantis Bank (Southwest Indian Ridge) exhibits significant compositional zonation, representing a high magma supply end member for accretion of the lower ocean crust at slow and ultraslow-spreading ridges. We present the petrographic and geochemical data of olivine gabbros from the 809-meter IODP Hole U1473A at Atlantis Bank gabbroic massif. Structurally, the upper portion of U1473A consists of a ∼600-meter shear zone; below this, the hole is relatively undeformed, with several minor shear zones. Olivine gabbros away from the shear zones have mineral trace element compositions indicative of high-temperature reaction with an oxide-undersaturated melt. By contrast, olivine gabbros within shear zones display petrographic and chemical features indicative of reaction with a relatively low-temperature, oxide-saturated melt. These features indicate an early stage of primitive to moderately evolved melt migration, followed by deformation-driven transport of highly evolved Fe-Ti-rich melts to high levels in this gabbroic massif. The close relationship between shear zones and the reaction with oxide-saturated melts suggests that syn-magmatic shear zones provide a conduit for late-stage, Fe-Ti-rich melt transport throughmore »Atlantis Bank lower crust. This process is critical to generate the compositional zonation observed. Thus, the degree of syn-magmatic deformation, which is fundamentally related to magma supply, plays a dominant role in developing the diversity of lower ocean crust observed at slow- and ultraslow-spreading ridges.« less
  5. International Ocean Discovery Program (IODP) Expedition 360 will form the first leg of a multiphase drilling project that aims to drill through the crust/mantle boundary at the ultraslow-spreading Southwest Indian Ridge and investigate the nature of the Mohorovičić seismic discontinuity (Moho). Expedition 360 is expected to drill ~1300 m into lower crustal gabbro and is unlikely to penetrate the crust–mantle transition or recover a significant amount of peridotite. Drilling will be sited at Atlantis Bank, on an elevated wave-cut platform on the east flank of the Atlantis II Transform. Previous drilling and mapping shows that Atlantis Bank is a large oceanic core complex, exposing a tectonic window of deep crustal and lithospheric mantle exhumed on the footwall of an oceanic detachment fault. The shallowest part of Atlantis Bank, at 700 m water depth, consists of a ~25 km2 wave-cut platform rimmed by a thin bioclastic limestone cap. The platform is part of a continuous gabbro massif ~40 km long by 30 km wide, overlying granular mantle peridotite that forms the lower slopes of the eastern wall of the Atlantis II Transform. Mapping shows that basement on the wave-cut platform consists largely of shallow-dipping amphibolitized gabbro mylonite generated by detachment faulting.more »This fault rooted near-continuously into partially crystalline gabbro for >4 million years. The mylonite exposed on the platform, and by cross-faulting and landslips on the sides of Atlantis Bank, both cut and are cut by steeply north dipping greenschist-facies diabase dikes. Thus, the gabbro crystallized at depth was uplifted into the zone of diking at the ridge axis, creating, in effect, the equivalent to the base of a dike–gabbro transition seen in many ophiolites. Previous Ocean Drilling Program (ODP) operations at Atlantis Bank drilled the 1508 m deep Hole 735B and 150 m deep Hole 1105A, both recovering long sections of gabbro. During Expedition 360, we propose to drill to a nominal depth of 1.3 km at a site on the northern edge of the Atlantis Bank platform, ~1 km north-northeast of Hole 1105A and ~2 km northeast of Hole 735B. A future drilling expedition, SloMo-Leg 2, aims to deepen the hole to ~3 km, with the overall goal of penetrating the crust–mantle transition, which is believed to be ~2.5 km above the seismically determined Moho. Specific objectives of Expedition 360 include establishing the lateral continuity of the igneous, metamorphic, and structural stratigraphies previously drilled to the southwest, testing the nature of a magnetic polarity transition, and investigating the biogeochemistry of the lower crust.« less