skip to main content


Title: To use or not to use synthetic stellar spectra in population synthesis models?
ABSTRACT

Stellar population synthesis (SPS) models are invaluable to study star clusters and galaxies. They provide means to extract stellar masses, stellar ages, star formation histories, chemical enrichment, and dust content of galaxies from their integrated spectral energy distributions, colours, or spectra. As most models, they contain uncertainties that can hamper our ability to model and interpret observed spectra. This work aims at studying a specific source of model uncertainty: the choice of an empirical versus a synthetic stellar spectral library. Empirical libraries suffer from limited coverage of parameter space, while synthetic libraries suffer from modelling inaccuracies. Given our current inability to have both ideal stellar-parameter coverage with ideal stellar spectra, what should one favour: better coverage of the parameters (synthetic library) or better spectra on a star-by-star basis (empirical library)? To study this question, we build a synthetic stellar library mimicking the coverage of an empirical library, and SPS models with different choices of stellar library tailored to these investigations. Through the comparison of model predictions and the spectral fitting of a sample of nearby galaxies, we learned that predicted colours are more affected by the coverage effect than the choice of a synthetic versus empirical library; the effects on predicted spectral indices are multiple and defy simple conclusions; derived galaxy ages are virtually unaffected by the choice of the library, but are underestimated when SPS models with limited parameter coverage are used; metallicities are robust against limited HRD coverage, but are underestimated when using synthetic libraries.

 
more » « less
NSF-PAR ID:
10125999
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
491
Issue:
2
ISSN:
0035-8711
Page Range / eLocation ID:
p. 2025-2042
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We introduce the ongoing MaStar project, which is going to construct a large, well-calibrated, high quality empirical stellar library with more than 8000 stars covering the wavelength range 3,622 - 10,354Å at a resolution of R̃2000, and with better than 3% relative flux calibration. The spectra are taken using hexagonal fibre bundles feeding the BOSS spectrographs on the 2.5m Sloan Foundation Telescope, by piggybacking on the SDSS-IV/APOGEE-2 observations. Compared to previous efforts of empirical libraries, the MaStar Library will have a more comprehensive stellar parameter coverage, especially in cool dwarfs, low metallicity stars, and stars with different [α/Fe]. This is achieved by a target selection method based on large spectroscopic catalogs from APOGEE, LAMOST, and SEGUE, combined with photometric selection. This empirical library will provide a new basis for calibrating theoretical spectral libraries and for stellar population synthesis. In addition, with identical spectral coverage and resolution to the ongoing integral field spectroscopy survey of nearby galaxies -- SDSS-IV/MaNGA (Mapping Nearby Galaxies at APO). this library is ideal for spectral modelling and stellar population analysis of MaNGA data. 
    more » « less
  2. ABSTRACT

    Models of stellar population synthesis (SPS) are the fundamental tool that relates the physical properties of a galaxy to its spectral energy distribution (SED). In this paper, we present DSPS: a python package for SPS. All of the functionality in DSPS is implemented natively in the JAX library for automatic differentiation, and so our predictions for galaxy photometry are fully differentiable, and directly inherit the performance benefits of JAX, including portability onto GPUs. DSPS also implements several novel features, such as i) a flexible empirical model for stellar metallicity that incorporates correlations with stellar age, ii) support for the Diffstar model that provides a physically-motivated connection between the star formation history of a galaxy (SFH) and the mass assembly of its underlying dark matter halo. We detail a set of theoretical techniques for using autodiff to calculate gradients of predictions for galaxy SEDs with respect to SPS parameters that control a range of physical effects, including SFH, stellar metallicity, nebular emission, and dust attenuation. When forward modelling the colours of a synthetic galaxy population, we find that DSPS can provide a factor of 5 speed-up over standard SPS codes on a CPU, and a factor of 300-400 on a modern GPU. When coupled with gradient-based techniques for optimization and inference, DSPS makes it practical to conduct expansive likelihood analyses of simulation-based models of the galaxy–halo connection that fully forward model galaxy spectra and photometry.

     
    more » « less
  3. Abstract

    The Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) Stellar Library (MaStar) is a large collection of high-quality empirical stellar spectra designed to cover all spectral types and ideal for use in the stellar population analysis of galaxies observed in the MaNGA survey. The library contains 59,266 spectra of 24,130 unique stars with spectral resolutionR∼ 1800 and covering a wavelength range of 3622–10,354 Å. In this work, we derive five physical parameters for each spectrum in the library: effective temperature (Teff), surface gravity (logg), metallicity ([Fe/H]), microturbulent velocity (log(vmicro)), and alpha-element abundance ([α/Fe]). These parameters are derived with a flexible data-driven algorithm that uses a neural network model. We train a neural network using the subset of 1675 MaStar targets that have also been observed in the Apache Point Observatory Galactic Evolution Experiment (APOGEE), adopting the independently-derived APOGEE Stellar Parameter and Chemical Abundance Pipeline parameters for this reference set. For the regions of parameter space not well represented by the APOGEE training set (7000 ≤T≤ 30,000 K), we supplement with theoretical model spectra. We present our derived parameters along with an analysis of the uncertainties and comparisons to other analyses from the literature.

     
    more » « less
  4. ABSTRACT

    Early observations with JWST indicate an overabundance of bright galaxies at redshifts z ≳ 10 relative to Hubble-calibrated model predictions. More puzzling still is the apparent lack of evolution in the abundance of such objects between z ∼ 9 and the highest redshifts yet probed, z ∼ 13–17. In this study, we first show that, despite a poor match with JWST luminosity functions (LFs), semi-empirical models calibrated to rest-ultraviolet LFs and colours at 4 ≲ z ≲ 8 are largely consistent with constraints on the properties of individual JWST galaxies, including their stellar masses, ages, and spectral slopes. We then show that order-of-magnitude scatter in the star formation rate of galaxies (at fixed halo mass) can indeed boost the abundance of bright galaxies, provided that star formation is more efficient than expected in low-mass haloes. However, this solution to the abundance problem introduces tension elsewhere: because it relies on the upscattering of low-mass haloes into bright magnitude bins, one expects typical ages, masses, and spectral slopes to be much lower than constraints from galaxies observed thus far. This tension can be alleviated by non-negligible reddening, suggesting that – if the first batch of photometrically selected candidates are confirmed – star formation and dust production could be more efficient than expected in galaxies at z ≳ 10.

     
    more » « less
  5. We use the first release of the SDSS/MaStar stellar library comprising ∼9000, high S/N spectra, to calculate integrated spectra of stellar population models. The models extend over the wavelength range 0.36-1.03 μm and share the same spectral resolution (R~1800) and flux calibration as the SDSS-IV/MaNGA galaxy data. The parameter space covered by the stellar spectra collected thus far allows the calculation of models with ages and chemical composition in the range t>200 Myr, -2 < [Z/H] < + 0.35, which will be extended as MaStar proceeds. Notably, the models include spectra for dwarf Main Sequence stars close to the core H-burning limit, as well spectra for cold, metal-rich giants. Both stellar types are crucial for modelling λ >0.7μm absorption spectra. Moreover, a better parameter coverage at low metallicity allows the calculation of models as young as 500 Myr and the full account of the Blue Horizontal Branch phase of old populations. We present models adopting two independent sets of stellar parameters (Teff, logg, [Z/H]). In a novel approach, their reliability is tested ’on the fly’ using the stellar population models themselves. We perform tests with Milky Way and Magellanic Clouds globular clusters, finding that the new models recover their ages and metallicities remarkably well, with systematics as low as a few per cent for homogeneous calibration sets. We also fit a MaNGA galaxy spectrum, finding residuals of the order of a few per cent comparable to the state-of-art models, but now over a wider wavelength range. 
    more » « less