Abstract Continuous layer jamming is an effective tunable stiffness mechanism that utilizes vacuum to vary friction between laminates enclosed in a membrane. In this paper, we present a discrete layer jamming mechanism that is composed of a multilayered beam and multiple variable pressure clamps placed discretely along the beam; system stiffness can be varied by changing the pressure applied by the clamps. In comparison to continuous layer jamming, discrete layer jamming is simpler as it can be implemented with dynamic variable pressure actuators for faster control, better portability, and no sealing issues due to no need for an air supply. Design and experiments show that discrete layer jamming can be used for a variable stiffness co-robot arm. The concept is validated by quasi-static cantilever bending experiments. The measurements show that clamping 10% of the beam area with two clamps increases the bending stiffness by around 17 times when increasing the clamping pressure from 0 to 3 MPa. Computational case studies using finite element analysis for the five key parameters are presented, including clamp location, clamp width, number of laminates, friction coefficient, and number of clamps. Clamp location, number of clamps, and number of laminates are found to be most useful for optimizing a discrete layer jamming design. Actuation requirements for a variable pressure clamp are presented based on results from laminate beam compression tests.
more »
« less
Flexure Mechanisms with Variable Stiffness and Damping Using Layer Jamming
Flexures provide precise motion control without friction or wear. Variable impedance mechanisms enable adapt- able and robust interactions with the environment. This paper combines the advantages of both approaches through layer jamming. Thin sheets of complaint material are encased in an airtight envelope, and when connected to a vacuum, the bending stiffness and damping increase dramatically. Using layer jamming structures as flexure elements leads to mechan- ical systems that can actively vary stiffness and damping. This results in flexure mechanisms with the versatility to transition between degrees of freedom and degrees of constraint and to tune impact response. This approach is used to create a 2-DOF, jamming-based, tunable impedance robotic wrist that enables passive hybrid force/position control for contact tasks.
more »
« less
- Award ID(s):
- 1637838
- PAR ID:
- 10126137
- Date Published:
- Journal Name:
- Proceedings of the IEEERSJ International Conference on Intelligent Robots and Systems
- ISSN:
- 2153-0858
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Inflated continuum robots are promising for a variety of navigation tasks, but controlling their motion with a small number of actuators is challenging. These inflated beam robots tend to buckle under compressive loads, producing extremely tight local curvature at difficult-to-control buckle point locations. In this paper, we present an inflated beam robot that uses distributed stiffness changing sections enabled by positive pressure layer jamming to control or prevent buckling. Passive valves are actuated by an electromagnet carried by an electromechanical device that travels inside the main inflated beam robot body. The valves themselves require no external connections or wiring, allowing the distributed stiffness control to be scaled to long beam lengths. Multiple layer jamming elements are stiffened simultaneously to achieve global stiffening, allowing the robot to support greater cantilevered loads and longer unsupported lengths. Local stiffening, achieved by leaving certain layer jamming elements unstiffened, allows the robot to produce "virtual joints" that dynamically change the robot kinematics. Implementing these stiffening strategies is compatible with growth through tip eversion and tendon steering, and enables a number of new capabilities for inflated beam robots and tip-everting robots.more » « less
-
Accurate impedance control is key for biomimetic mechanical behavior in lower-limb robotic prostheses. However, due to compliance, friction, and inertia in the drivetrain, the commonly used open-loop impedance control strategy can often produce inaccurate results without appropriate compensation. This article presents a controller that accounts for these dynamics to improve the impedance rendering accuracy of a robotic prosthesis research platform, the Open-Source Leg (OSL v2). We first develop a dynamic model of the OSL v2’s drivetrain and show that it accurately predicts the system's joint torque with 97% mean explained variance across a diverse array of experiments. We then present a controller that compensates for the OSL v2’s inherent dynamics using a combination of feedback linearization and actuator-state feedback control. We experimentally validate this controller on the OSL v2 with a rotary dynamometer and in treadmill walking experiments. We show that it can render various constant impedance behaviors with higher stiffness and damping accuracy than a baseline controller. We also show our controller's ability to replicate the variable impedance trajectories of the human ankle joint, suggesting that this control approach could enable robotic prostheses that are biomimetic in their mechanical impedance in addition to their kinematics and kinetics.more » « less
-
The fit of a wearable device, such as a prosthesis, can be quantitatively characterized by the mechanical coupling at the user-device interface. It is thought that the mechanical impedance, specifically the stiffness and damping, of wearable device interfaces can significantly impact human performance while using them. To test this theory, we develop a forearm-mounted testbed with a motorized, two degree of freedom (2-DOF) gimbal to simulate variations in the mechanical fit of an upper-extremity wearable device during pointing and target tracking tasks. The two gimbal motors are impedance-controlled to vary the mechanical stiffness and damping between the user and the device's laser pointer end-effector. In this paper, experiments are conducted to determine the torque constants of the motors before implementation in the testbed, and to validate the accuracy of the joint impedance controller. The completed impedance-controlled wearable interface testbed is validated further by comparing the gimbal joint displacements and torques, recorded during 2-DOF base excitation experiments, to MATLAB Simulink simulation data.more » « less
-
This work investigates the stability and rendering limitations of admittance-type haptic devices. We investigated a wider range of impedances than had previously been considered, including stiffness, damping, mass, and combinations thereof. The coupled human driving impedance, actuator position control bandwidth, and loop delay are identified as major factors affecting the range of stable impedances. Finally, the theoretical results are experimentally verified using a custom one degree of freedom admittance type haptic device.more » « less