skip to main content


Title: Projecting Urbanization and Landscape Change at Large Scale Using the FUTURES Model
Increasing population and rural to urban migration are accelerating urbanization globally, permanently transforming natural systems over large extents. Modelling landscape change over large regions, however, presents particular challenges due to local-scale variations in social and environmental factors that drive land change. We simulated urban development across the South Atlantic States (SAS), a region experiencing rapid population growth and urbanization, using FUTURES—an open source land change model that uses demand for development, local development suitability factors, and a stochastic patch growing algorithm for projecting alternative futures of urban form and landscape change. New advances to the FUTURES modelling framework allow for high resolution projections over large spatial extents by leveraging parallel computing. We simulated the adoption of different urban growth strategies that encourage settlement densification in the SAS as alternatives to the region’s increasing sprawl. Evaluation of projected patterns indicate a 15% increase in urban lands by 2050 given a status quo development scenario compared to a 14.8% increase for the Infill strategy. Status quo development resulted in a 3.72% loss of total forests, 2.97% loss of highly suitable agricultural land, and 3.69% loss of ecologically significant lands. An alternative Infill scenario resulted in similar losses of total forest (3.62%) and ecologically significant lands (3.63%) yet consumed less agricultural lands (1.23% loss). Moreover, infill development patterns differed qualitatively from the status quo and resulted in less fragmentation of the landscape.  more » « less
Award ID(s):
1737563
NSF-PAR ID:
10126152
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Land
Volume:
8
Issue:
10
ISSN:
2073-445X
Page Range / eLocation ID:
144
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We integrated a mechanistic wildfire simulation system with an agent-based landscape change model to investigate the feedbacks among climate change, population growth, development, landowner decision-making, vegetative succession, and wildfire. Our goal was to develop an adaptable simulation platform for anticipating risk-mitigation tradeoffs in a fire-prone wildland–urban interface (WUI) facing conditions outside the bounds of experience. We describe how five social and ecological system (SES) submodels interact over time and space to generate highly variable alternative futures even within the same scenario as stochastic elements in simulated wildfire, succession, and landowner decisions create large sets of unique, path-dependent futures for analysis. We applied the modeling system to an 815 km2 study area in western Oregon at a sub-taxlot parcel grain and annual timestep, generating hundreds of alternative futures for 2007–2056 (50 years) to explore how WUI communities facing compound risks from increasing wildfire and expanding periurban development can situate and assess alternative risk management approaches in their localized SES context. The ability to link trends and uncertainties across many futures to processes and events that unfold in individual futures is central to the modeling system. By contrasting selected alternative futures, we illustrate how assessing simulated feedbacks between wildfire and other SES processes can identify tradeoffs and leverage points in fire-prone WUI landscapes. Assessments include a detailed “post-mortem” of a rare, extreme wildfire event, and uncovered, unexpected stabilizing feedbacks from treatment costs that reduced the effectiveness of agent responses to signs of increasing risk. 
    more » « less
  2. Abstract

    Irrigation in agricultural and urban settings is responsible for nearly 80% of the water use in the Phoenix Metropolitan Area. Over the last three decades, there has been a continuous decrease in cropland area and its water consumption. Meanwhile, urbanization has increased outdoor irrigation to maintain residential areas and parks. Given these trends, irrigation water use (IWU) is subject to large uncertainties which challenge land and water management. In this work, we used a land surface model with an irrigation module to quantify urban and agricultural IWU under the individualized and combined effects of future urban growth and anticipated climate change. A large set of scenario combinations (96 in total) allowed us to bracket plausible pathways of IWU change in the 21st Century. We found that land use change reduced IWU by −4.6% to −0.1% due to savings from crop‐urban conversion, while climate change effects led to increases in IWU by +3.8% to +8.6%. When combined, total IWU changed from +2.5% to +5.8% in the intermediate future (2041–2070) and from −0.5% to 6.8% in the far future (2071–2100). These outcomes suggest that water savings from land use change will likely not be able to compensate for the increasing demand from urban irrigation when considering climate change, under current irrigation practices. Our approach to model the interconnections between land and water under climate change can be used to support sustainable water planning in cities in other arid regions.

     
    more » « less
  3. The extensive interest in sustainable water management reflects the extent to which the global water landscape has changed in the past twenty years, which is a natural development of changes in water resources and an increase in the level of imbalance between water supply and demand. In this paper, a simulation model based on system dynamics (SD) methodology was developed to aid sustainable water management efforts in a semi-arid region. Six policy scenarios were used to study, analyze, and assess water management trends in the Southeast region of New Mexico, USA. The modeling process included two phases: calibration (2000–2015) and future prediction (2016–2050). Several statistical criteria were applied to assess the developed model performance. The findings revealed that the simulated outputs were in excellent agreement with the historical data, indicating accurate model simulation. The SD model’s determination coefficients ranged from 0.9288 to 0.9936 and the index of agreement values ranged from 0.9397 to 0.9958. Findings for the business-as-usual scenario indicated that total water withdrawals and total population will continue to rise, whereas groundwater storage, agricultural consumptive water use, and total consumptive water use will decrease over the simulated period. Sensitivity analysis using Monte Carlo simulation indicated that cultivated irrigated land change is the most influential parameter affecting groundwater storage, water supply storage change (total withdrawals), agricultural consumptive water use, and total consumptive water use. The changes occurring in the agricultural cultivated area had a great influence on controlling the groundwater system. Overall, the results showed that our SD model has been successful in capturing the system’s dynamic behavior, and confirmed its capability in modeling water management issues for policy and decision makers under semi-arid conditions. 
    more » « less
  4. Landscape structure in the Eastern US experienced great changes in the last century with the expansion of forest cover into abandoned agricultural land and the clearing of secondary forest cover for urban development. In this paper, the spatial and temporal patterns of forest cover from 1914 to 2004 in the Gwynns Falls watershed in Baltimore, Maryland were quantified from historic maps and aerial photographs. Using a database of forest patches from six times—1914, 1938, 1957, 1971, 1999, and 2004—we found that forest cover changed, both temporally and spatially. While total forest area remained essentially constant, turnover in forest cover was very substantial. Less than 20% of initial forest cover remained unchanged. Forest cover became increasingly fragmented as the number, size, shape, and spatial distribution of forest patches within the watershed changed greatly. Forest patch change was also analyzed within 3-km distance bands extending from the urban core to the more suburban end of the watershed. This analysis showed that, over time, the location of high rates of forest cover change shifted from urban to suburban bands which coincides with the spatial shift of urbanization. Forest cover tended to be more stable in and near the urban center, whereas forest cover changed more in areas where urbanization was still in process. These results may have critical implications for the ecological functioning of forest patches and underscore the need to integrate multi-temporal data layers to investigate the spatial pattern of forest cover and the temporal variations of that spatial pattern. Zhou, W., G. Huang, S. T. A. Pickett, and M. L. Cadenasso. 2011. 90 Years of Forest Cover Change in an Urbanizing Watershed: Spatial and Temporal Dynamics. Landscape Ecology 26:645–659. https://doi.org/10.1007/s10980-011-9589-z. 
    more » « less
  5. Abstract

    Land-use change is highly dynamic globally and there is great uncertainty about the effects of land-use legacies on contemporary environmental performance. We used a chronosequence of urban grasslands (lawns) that were converted from agricultural and forested lands from 10 to over 130 years prior to determine if land-use legacy influences components of soil biodiversity and composition over time. We used historical aerial imagery to identify sites in Baltimore County, MD (USA) with agricultural versus forest land-use history. Soil samples were taken from these sites as well as from existing well-studied agricultural and forest sites used as historical references by the National Science Foundation Long-Term Ecological Research Baltimore Ecosystem Study program. We found that the microbiomes in lawns of agricultural origin were similar to those in agricultural reference sites, which suggests that the ecological parameters on lawns and reference agricultural systems are similar in how they influence soil microbial community dynamics. In contrast, lawns that were previously forest showed distinct shifts in soil bacterial composition upon recent conversion but reverted back in composition similar to forest soils as the lawns aged over decades. Soil fungal communities shifted after forested land was converted to lawns, but unlike bacterial communities, did not revert in composition over time. Our results show that components of bacterial biodiversity and composition are resistant to change in previously forested lawns despite urbanization processes. Therefore land-use legacy, depending on the prior use, is an important factor to consider when examining urban ecological homogenization.

     
    more » « less