skip to main content


Title: Projecting Urbanization and Landscape Change at Large Scale Using the FUTURES Model
Increasing population and rural to urban migration are accelerating urbanization globally, permanently transforming natural systems over large extents. Modelling landscape change over large regions, however, presents particular challenges due to local-scale variations in social and environmental factors that drive land change. We simulated urban development across the South Atlantic States (SAS), a region experiencing rapid population growth and urbanization, using FUTURES—an open source land change model that uses demand for development, local development suitability factors, and a stochastic patch growing algorithm for projecting alternative futures of urban form and landscape change. New advances to the FUTURES modelling framework allow for high resolution projections over large spatial extents by leveraging parallel computing. We simulated the adoption of different urban growth strategies that encourage settlement densification in the SAS as alternatives to the region’s increasing sprawl. Evaluation of projected patterns indicate a 15% increase in urban lands by 2050 given a status quo development scenario compared to a 14.8% increase for the Infill strategy. Status quo development resulted in a 3.72% loss of total forests, 2.97% loss of highly suitable agricultural land, and 3.69% loss of ecologically significant lands. An alternative Infill scenario resulted in similar losses of total forest (3.62%) and ecologically significant lands (3.63%) yet consumed less agricultural lands (1.23% loss). Moreover, infill development patterns differed qualitatively from the status quo and resulted in less fragmentation of the landscape.  more » « less
Award ID(s):
1737563
NSF-PAR ID:
10126152
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Land
Volume:
8
Issue:
10
ISSN:
2073-445X
Page Range / eLocation ID:
144
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Population change is a main driver behind global environmental change, including urban land expansion. In future scenario modeling, assumptions regarding how populations will change locally, despite identical global constraints of Shared Socioeconomic Pathways (SSPs), can have dramatic effects on subsequent regional urbanization. Using a spatial modeling experiment at high resolution (1 km), this study compared how two alternative US population projections, varying in the spatially explicit nature of demographic patterns and migration, affect urban land dynamics simulated by the Spatially Explicit, Long-term, Empirical City development (SELECT) model for SSP2, SSP3, and SSP5. The population projections included: (1) newer downscaled state-specific population (SP) projections inclusive of updated international and domestic migration estimates, and (2) prevailing downscaled national-level projections (NP) agnostic to localized demographic processes. Our work shows that alternative population inputs, even those under the same SSP, can lead to dramatic and complex differences in urban land outcomes. Under the SP projection, urbanization displays more of an extensification pattern compared to the NP projection. This suggests that recent demographic information supports more extreme urban extensification and land pressures on existing rural areas in the US than previously anticipated. Urban land outcomes to population inputs were spatially variable where areas in close spatial proximity showed divergent patterns, reflective of the spatially complex urbanization processes that can be accommodated in SELECT. Although different population projections and assumptions led to divergent outcomes, urban land development is not a linear product of population change but the result of complex relationships between population, dynamic urbanization processes, stages of urban development maturity, and feedback mechanisms. These findings highlight the importance of accounting for spatial variations in the population projections, but also urbanization process to accurately project long-term urban land patterns.

     
    more » « less
  2. We integrated a mechanistic wildfire simulation system with an agent-based landscape change model to investigate the feedbacks among climate change, population growth, development, landowner decision-making, vegetative succession, and wildfire. Our goal was to develop an adaptable simulation platform for anticipating risk-mitigation tradeoffs in a fire-prone wildland–urban interface (WUI) facing conditions outside the bounds of experience. We describe how five social and ecological system (SES) submodels interact over time and space to generate highly variable alternative futures even within the same scenario as stochastic elements in simulated wildfire, succession, and landowner decisions create large sets of unique, path-dependent futures for analysis. We applied the modeling system to an 815 km2 study area in western Oregon at a sub-taxlot parcel grain and annual timestep, generating hundreds of alternative futures for 2007–2056 (50 years) to explore how WUI communities facing compound risks from increasing wildfire and expanding periurban development can situate and assess alternative risk management approaches in their localized SES context. The ability to link trends and uncertainties across many futures to processes and events that unfold in individual futures is central to the modeling system. By contrasting selected alternative futures, we illustrate how assessing simulated feedbacks between wildfire and other SES processes can identify tradeoffs and leverage points in fire-prone WUI landscapes. Assessments include a detailed “post-mortem” of a rare, extreme wildfire event, and uncovered, unexpected stabilizing feedbacks from treatment costs that reduced the effectiveness of agent responses to signs of increasing risk. 
    more » « less
  3. Abstract

    Irrigation in agricultural and urban settings is responsible for nearly 80% of the water use in the Phoenix Metropolitan Area. Over the last three decades, there has been a continuous decrease in cropland area and its water consumption. Meanwhile, urbanization has increased outdoor irrigation to maintain residential areas and parks. Given these trends, irrigation water use (IWU) is subject to large uncertainties which challenge land and water management. In this work, we used a land surface model with an irrigation module to quantify urban and agricultural IWU under the individualized and combined effects of future urban growth and anticipated climate change. A large set of scenario combinations (96 in total) allowed us to bracket plausible pathways of IWU change in the 21st Century. We found that land use change reduced IWU by −4.6% to −0.1% due to savings from crop‐urban conversion, while climate change effects led to increases in IWU by +3.8% to +8.6%. When combined, total IWU changed from +2.5% to +5.8% in the intermediate future (2041–2070) and from −0.5% to 6.8% in the far future (2071–2100). These outcomes suggest that water savings from land use change will likely not be able to compensate for the increasing demand from urban irrigation when considering climate change, under current irrigation practices. Our approach to model the interconnections between land and water under climate change can be used to support sustainable water planning in cities in other arid regions.

     
    more » « less
  4. Spatially explicit, fine-grained datasets describing historical urban extents are rarely available prior to the era of operational remote sensing. However, such data are necessary to better understand long-term urbanization and land development processes and for the assessment of coupled nature–human systems (e.g., the dynamics of the wildland–urban interface). Herein, we propose a framework that jointly uses remote-sensing-derived human settlement data (i.e., the Global Human Settlement Layer, GHSL) and scanned, georeferenced historical maps to automatically generate historical urban extents for the early 20th century. By applying unsupervised color space segmentation to the historical maps, spatially constrained to the urban extents derived from the GHSL, our approach generates historical settlement extents for seamless integration with the multi-temporal GHSL. We apply our method to study areas in countries across four continents, and evaluate our approach against historical building density estimates from the Historical Settlement Data Compilation for the US (HISDAC-US), and against urban area estimates from the History Database of the Global Environment (HYDE). Our results achieve Area-under-the-Curve values >0.9 when comparing to HISDAC-US and are largely in agreement with model-based urban areas from the HYDE database, demonstrating that the integration of remote-sensing-derived observations and historical cartographic data sources opens up new, promising avenues for assessing urbanization and long-term land cover change in countries where historical maps are available. 
    more » « less
  5. Abstract

    Land-use change is highly dynamic globally and there is great uncertainty about the effects of land-use legacies on contemporary environmental performance. We used a chronosequence of urban grasslands (lawns) that were converted from agricultural and forested lands from 10 to over 130 years prior to determine if land-use legacy influences components of soil biodiversity and composition over time. We used historical aerial imagery to identify sites in Baltimore County, MD (USA) with agricultural versus forest land-use history. Soil samples were taken from these sites as well as from existing well-studied agricultural and forest sites used as historical references by the National Science Foundation Long-Term Ecological Research Baltimore Ecosystem Study program. We found that the microbiomes in lawns of agricultural origin were similar to those in agricultural reference sites, which suggests that the ecological parameters on lawns and reference agricultural systems are similar in how they influence soil microbial community dynamics. In contrast, lawns that were previously forest showed distinct shifts in soil bacterial composition upon recent conversion but reverted back in composition similar to forest soils as the lawns aged over decades. Soil fungal communities shifted after forested land was converted to lawns, but unlike bacterial communities, did not revert in composition over time. Our results show that components of bacterial biodiversity and composition are resistant to change in previously forested lawns despite urbanization processes. Therefore land-use legacy, depending on the prior use, is an important factor to consider when examining urban ecological homogenization.

     
    more » « less