Abstract Population change is a main driver behind global environmental change, including urban land expansion. In future scenario modeling, assumptions regarding how populations will change locally, despite identical global constraints of Shared Socioeconomic Pathways (SSPs), can have dramatic effects on subsequent regional urbanization. Using a spatial modeling experiment at high resolution (1 km), this study compared how two alternative US population projections, varying in the spatially explicit nature of demographic patterns and migration, affect urban land dynamics simulated by the Spatially Explicit, Long-term, Empirical City development (SELECT) model for SSP2, SSP3, and SSP5. The population projections included: (1) newer downscaled state-specific population (SP) projections inclusive of updated international and domestic migration estimates, and (2) prevailing downscaled national-level projections (NP) agnostic to localized demographic processes. Our work shows that alternative population inputs, even those under the same SSP, can lead to dramatic and complex differences in urban land outcomes. Under the SP projection, urbanization displays more of an extensification pattern compared to the NP projection. This suggests that recent demographic information supports more extreme urban extensification and land pressures on existing rural areas in the US than previously anticipated. Urban land outcomes to population inputs were spatially variable where areas in close spatial proximity showed divergent patterns, reflective of the spatially complex urbanization processes that can be accommodated in SELECT. Although different population projections and assumptions led to divergent outcomes, urban land development is not a linear product of population change but the result of complex relationships between population, dynamic urbanization processes, stages of urban development maturity, and feedback mechanisms. These findings highlight the importance of accounting for spatial variations in the population projections, but also urbanization process to accurately project long-term urban land patterns.
more »
« less
Projecting Urbanization and Landscape Change at Large Scale Using the FUTURES Model
Increasing population and rural to urban migration are accelerating urbanization globally, permanently transforming natural systems over large extents. Modelling landscape change over large regions, however, presents particular challenges due to local-scale variations in social and environmental factors that drive land change. We simulated urban development across the South Atlantic States (SAS), a region experiencing rapid population growth and urbanization, using FUTURES—an open source land change model that uses demand for development, local development suitability factors, and a stochastic patch growing algorithm for projecting alternative futures of urban form and landscape change. New advances to the FUTURES modelling framework allow for high resolution projections over large spatial extents by leveraging parallel computing. We simulated the adoption of different urban growth strategies that encourage settlement densification in the SAS as alternatives to the region’s increasing sprawl. Evaluation of projected patterns indicate a 15% increase in urban lands by 2050 given a status quo development scenario compared to a 14.8% increase for the Infill strategy. Status quo development resulted in a 3.72% loss of total forests, 2.97% loss of highly suitable agricultural land, and 3.69% loss of ecologically significant lands. An alternative Infill scenario resulted in similar losses of total forest (3.62%) and ecologically significant lands (3.63%) yet consumed less agricultural lands (1.23% loss). Moreover, infill development patterns differed qualitatively from the status quo and resulted in less fragmentation of the landscape.
more »
« less
- Award ID(s):
- 1737563
- PAR ID:
- 10126152
- Date Published:
- Journal Name:
- Land
- Volume:
- 8
- Issue:
- 10
- ISSN:
- 2073-445X
- Page Range / eLocation ID:
- 144
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We integrated a mechanistic wildfire simulation system with an agent-based landscape change model to investigate the feedbacks among climate change, population growth, development, landowner decision-making, vegetative succession, and wildfire. Our goal was to develop an adaptable simulation platform for anticipating risk-mitigation tradeoffs in a fire-prone wildland–urban interface (WUI) facing conditions outside the bounds of experience. We describe how five social and ecological system (SES) submodels interact over time and space to generate highly variable alternative futures even within the same scenario as stochastic elements in simulated wildfire, succession, and landowner decisions create large sets of unique, path-dependent futures for analysis. We applied the modeling system to an 815 km2 study area in western Oregon at a sub-taxlot parcel grain and annual timestep, generating hundreds of alternative futures for 2007–2056 (50 years) to explore how WUI communities facing compound risks from increasing wildfire and expanding periurban development can situate and assess alternative risk management approaches in their localized SES context. The ability to link trends and uncertainties across many futures to processes and events that unfold in individual futures is central to the modeling system. By contrasting selected alternative futures, we illustrate how assessing simulated feedbacks between wildfire and other SES processes can identify tradeoffs and leverage points in fire-prone WUI landscapes. Assessments include a detailed “post-mortem” of a rare, extreme wildfire event, and uncovered, unexpected stabilizing feedbacks from treatment costs that reduced the effectiveness of agent responses to signs of increasing risk.more » « less
-
Spatially explicit, fine-grained datasets describing historical urban extents are rarely available prior to the era of operational remote sensing. However, such data are necessary to better understand long-term urbanization and land development processes and for the assessment of coupled nature–human systems (e.g., the dynamics of the wildland–urban interface). Herein, we propose a framework that jointly uses remote-sensing-derived human settlement data (i.e., the Global Human Settlement Layer, GHSL) and scanned, georeferenced historical maps to automatically generate historical urban extents for the early 20th century. By applying unsupervised color space segmentation to the historical maps, spatially constrained to the urban extents derived from the GHSL, our approach generates historical settlement extents for seamless integration with the multi-temporal GHSL. We apply our method to study areas in countries across four continents, and evaluate our approach against historical building density estimates from the Historical Settlement Data Compilation for the US (HISDAC-US), and against urban area estimates from the History Database of the Global Environment (HYDE). Our results achieve Area-under-the-Curve values >0.9 when comparing to HISDAC-US and are largely in agreement with model-based urban areas from the HYDE database, demonstrating that the integration of remote-sensing-derived observations and historical cartographic data sources opens up new, promising avenues for assessing urbanization and long-term land cover change in countries where historical maps are available.more » « less
-
Abstract Land-use change is highly dynamic globally and there is great uncertainty about the effects of land-use legacies on contemporary environmental performance. We used a chronosequence of urban grasslands (lawns) that were converted from agricultural and forested lands from 10 to over 130 years prior to determine if land-use legacy influences components of soil biodiversity and composition over time. We used historical aerial imagery to identify sites in Baltimore County, MD (USA) with agricultural versus forest land-use history. Soil samples were taken from these sites as well as from existing well-studied agricultural and forest sites used as historical references by the National Science Foundation Long-Term Ecological Research Baltimore Ecosystem Study program. We found that the microbiomes in lawns of agricultural origin were similar to those in agricultural reference sites, which suggests that the ecological parameters on lawns and reference agricultural systems are similar in how they influence soil microbial community dynamics. In contrast, lawns that were previously forest showed distinct shifts in soil bacterial composition upon recent conversion but reverted back in composition similar to forest soils as the lawns aged over decades. Soil fungal communities shifted after forested land was converted to lawns, but unlike bacterial communities, did not revert in composition over time. Our results show that components of bacterial biodiversity and composition are resistant to change in previously forested lawns despite urbanization processes. Therefore land-use legacy, depending on the prior use, is an important factor to consider when examining urban ecological homogenization.more » « less
-
Abstract Urbanization can influence local richness (alpha diversity) and community composition (beta diversity) in numerous ways. For instance, reduced connectivity and land cover change may lead to the loss of native specialist taxa, decreasing alpha diversity. Alternatively, if urbanization facilitates nonnative species introductions and generalist taxa, alpha diversity may remain unchanged or increase, while beta diversity could decline due to the homogenization of community structure. Wetlands and ponds provide critical ecosystem services and support diverse communities, making them important systems in which to understand the consequences of urbanization. To determine how urban development shapes pond community structure, we surveyed 68 ponds around Madison, Wisconsin, USA, which were classified as urban, greenspace, or rural based on surrounding land use. We evaluated how landscape and local pond factors were correlated with the alpha diversity of aquatic plants, macroinvertebrates, and aquatic vertebrates. We also analyzed whether surrounding land use was associated with changes in community composition and the presence of specific taxa. We found a 23% decrease in mean richness (alpha diversity) from rural to urban pond sites and a 15% decrease from rural to greenspace pond sites. Among landscape factors, adjacent developed land, mowed lawn cover, and greater distances to other waterbodies were negatively correlated with observed pond richness. Among pond level factors, habitat complexity was associated with increased richness, while nonnative fishes were associated with decreased richness. Beta diversity was relatively high for all ponds due to turnover in composition between sites. Urban ponds supported more nonnative species, lacked a subset of native species found in rural ponds, and had slightly higher beta diversity than greenspace and rural ponds. Our results suggest that integrating ponds into connected greenspaces, maintaining riparian vegetation, preventing nonnative fish introductions, and promoting habitat complexity may mitigate the negative effects of urbanization on aquatic richness. While ponds are small in size and rarely incorporated into urban conservation planning, the high beta diversity of distinct pond communities emphasizes their importance for supporting urban biodiversity.more » « less
An official website of the United States government

