skip to main content


Title: Physics guided RNNs for modeling dynamical systems: A case study in simulating lake temperature profiles
This paper proposes a physics-guided recurrent neural network model (PGRNN) that combines RNNs and physics-based models to leverage their complementary strengths and improve the modeling of physical processes. Specifically, we show that a PGRNN can improve prediction accuracy over that of physical models, while generating outputs consistent with physical laws, and achieving good generalizability. Standard RNNs, even when producing superior prediction accuracy, often produce physically inconsistent results and lack generalizability. We further enhance this approach by using a pre-training method that leverages the simulated data from a physics-based model to address the scarcity of observed data. Although we present and evaluate this methodology in the context of modeling the dynamics of temperature in lakes, it is applicable more widely to a range of scientific and engineering disciplines where mechanistic (also known as process-based) models are used, e.g., power engineering, climate science, materials science, computational chemistry, and biomedicine.  more » « less
Award ID(s):
1725386
NSF-PAR ID:
10126157
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Proceedings of the 2019 SIAM International Conference on Data Mining
Page Range / eLocation ID:
558-566
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Physics-based models are often used to study engineering and environmental systems. The ability to model these systems is the key to achieving our future environmental sustainability and improving the quality of human life. This article focuses on simulating lake water temperature, which is critical for understanding the impact of changing climate on aquatic ecosystems and assisting in aquatic resource management decisions. General Lake Model (GLM) is a state-of-the-art physics-based model used for addressing such problems. However, like other physics-based models used for studying scientific and engineering systems, it has several well-known limitations due to simplified representations of the physical processes being modeled or challenges in selecting appropriate parameters. While state-of-the-art machine learning models can sometimes outperform physics-based models given ample amount of training data, they can produce results that are physically inconsistent. This article proposes a physics-guided recurrent neural network model (PGRNN) that combines RNNs and physics-based models to leverage their complementary strengths and improves the modeling of physical processes. Specifically, we show that a PGRNN can improve prediction accuracy over that of physics-based models (by over 20% even with very little training data), while generating outputs consistent with physical laws. An important aspect of our PGRNN approach lies in its ability to incorporate the knowledge encoded in physics-based models. This allows training the PGRNN model using very few true observed data while also ensuring high prediction accuracy. Although we present and evaluate this methodology in the context of modeling the dynamics of temperature in lakes, it is applicable more widely to a range of scientific and engineering disciplines where physics-based (also known as mechanistic) models are used. 
    more » « less
  2. Abstract

    To improve predictive machine learning-based models limited by sparse data, supplemental physics-related features are introduced into a deep neural network (DNN). While some approaches inject physics through differential equations or numerical simulation, improvements are possible using simplified relationships from engineering references. To evaluate this hypothesis, thin rectangular plates were simulated to generate training datasets. With plate dimensions and material properties as input features and fundamental natural frequency as the output, predictive performance of a data-driven DNN-based model is compared with models using supplemental inputs, such as modulus of rigidity. To evaluate model accuracy improvements, these additional features are injected into various DNN layers, and the network is trained with four different dataset sizes. When evaluated against independent data of similar features to the training sets, supplementation provides no statistically-significant prediction error reduction. However, notable accuracy gains occur when independent test data is of material and dimensions different from the original training set. Furthermore, when physics-enhanced data is injected into multiple DNN layers, reductions in mean error from 33.2% to 19.6%, 34.9% to 19.9%, 35.8% to 22.4%, and 43.0% to 28.4% are achieved for dataset sizes of 261, 117, 60, and 30, respectively, demonstrating potential for generalizability using a data supplementation approach. Additionally, when compared with other methods—such as linear regression and support vector machine (SVM) approaches—the physics-enhanced DNN demonstrates an order of magnitude reduction in percentage error for dataset sizes of 261, 117, and 60 and a 30% reduction for a size of 30 when compared with a cubic SVM model independently tested with data divergent from the training and validation set.

     
    more » « less
  3. Microstructure-sensitive material design has become popular among materials engineering researchers in the last decade because it allows the control of material performance through the design of microstructures. In this study, the microstructure is defined by an orientation distribution function (ODF). A physics-informed machine learning approach is integrated into microstructure design to improve the accuracy, computational efficiency, and explainability of microstructure-sensitive design. When data generation is costly and numerical models need to follow certain physical laws, machine learning models that are domain-aware perform more efficiently than conventional machine learning models. Therefore, a new paradigm called Physics-Informed Neural Network (PINN) is introduced in the literature. This study applies the PINN to microstructure-sensitive modeling and inverse design to explore the material behavior under deformation processing. In particular, we demonstrate the application of PINN to small-data problems driven by a crystal plasticity model that needs to satisfy the physics-based design constraints of the microstructural orientation space. For the first problem, we predict the microstructural texture evolution of Copper during a tensile deformation process as a function of initial texturing and strain rate. The second problem aims to calibrate the crystal plasticity parameters of Ti-7Al alloy by solving an inverse design problem to match PINN-predicted final texture prediction and the experimental data. 
    more » « less
  4. Optical metasurfaces consist of densely arranged unit cells that manipulate light through various light confinement and scattering processes. Due to its unique advantages, such as high performance, small form factor and easy integration with semiconductor devices, metasurfaces have been gathering increasing attention in fields such as displays, imaging, sensing and optical computation. Despite advances in fabrication and characterization, a viable design prediction for suitable optical response remains challenging for complex optical metamaterial systems. The computation cost required to obtain the optimal design exponentially grows as the design complexity increases. Furthermore, the design prediction is challenging since the inverse problem is often ill-posed. In recent years, deep learning (DL) methods have shown great promise in the area of inverse design. Inspired by this and the capability of DL to produce fast inference, we introduce a physics-informed DL framework to expedite the computation for the inverse design of metasurfaces. Addition of the physics-based constraints improve generalizability of the DL model while reducing data burden. Our approach introduces a tandem DL architecture with physics-based learning to alleviate the nonuniqueness issue by selecting designs that are scientifically consistent, with low error in design prediction and accurate reconstruction of optical responses. To prove the concept, we focus on the inverse design of a representative plasmonic device that consists of metal gratings deposited on a dielectric film on top of a metal substrate. The optical response of the device is determined by the geometrical dimensions as well as the material properties. The training and testing data are obtained through Rigorous Coupled-Wave Analysis (RCWA), while the physics-based constraint is derived from solving the electromagnetic (EM) wave equations for a simplified homogenized model. We consider the prediction of design for the optical response of a single wavelength incident or a spectrum of wavelength in the visible light range. Our model converges with an accuracy up to 97% for inverse design prediction with the optical response for the visible light spectrum as input. The model is also able to predict design with accuracy up to 96% and optical response reconstruction accuracy of 99% for optical response of a single wavelength of light as input. 
    more » « less
  5. Abstract The temperature history of an additively manufactured part plays a critical role in determining process–structure–property relationships in fusion-based additive manufacturing (AM) processes. Therefore, fast thermal simulation methods are needed for a variety of AM tasks, from temperature history prediction for part design and process planning to in situ temperature monitoring and control during manufacturing. However, conventional numerical simulation methods fall short in satisfying the strict requirements of time efficiency in these applications due to the large space and time scales of the required multiscale simulation. While data-driven surrogate models are of interest for their rapid computation capabilities, the performance of these models relies on the size and quality of the training data, which is often prohibitively expensive to create. Physics-informed neural networks (PINNs) mitigate the need for large datasets by imposing physical principles during the training process. This work investigates the use of a PINN to predict the time-varying temperature distribution in a part during manufacturing with laser powder bed fusion (L-PBF). Notably, the use of the PINN in this study enables the model to be trained solely on randomly synthesized data. These training data are both inexpensive to obtain, and the presence of stochasticity in the dataset improves the generalizability of the trained model. Results show that the PINN model achieves higher accuracy than a comparable artificial neural network trained on labeled data. Further, the PINN model trained in this work maintains high accuracy in predicting temperature for laser path scanning strategies unseen in the training data. 
    more » « less