By analyzing a time-homogeneous Markov chain constructed using trajectories of undrogued drifting buoys from the NOAA Global Drifter Program, we find that probability density can distribute in a manner that resembles very closely the recently observed recurrent belt of high Sargassum concentration in the tropical Atlantic between 5 and 10°N, coined the Great Atlantic Sargassum Belt (GASB). A spectral analysis of the associated transition matrix further unveils a forward attracting almost-invariant set in the northwestern Gulf of Mexico with a corresponding basin of attraction weakly connected with the Sargasso Sea but including the nutrient-rich regions around the Amazon and Orinoco rivers mouths and also the upwelling system off the northern coast of West Africa. This represents a data-based inference of potential remote sources of Sargassum recurrently invading the Intra-Americas Seas (IAS). By further applying Transition Path Theory (TPT) to the data-derived Markov chain model, two potential pathways for Sargassum into the IAS from the upwelling system off the coast of Africa are revealed. One TPT-inferred pathway takes place along the GASB. The second pathway is more southern and slower, first going through the Gulf of Guinea, then across the tropical Atlantic toward the mouth of the Amazon River, and finally along the northeastern South American margin. The existence of such a southern TPT-inferred pathway may have consequences for bloom stimulation by nutrients from river runoff.
more »
« less
The great Atlantic Sargassum belt
Pelagic Sargassum is abundant in the Sargasso Sea, but a recurrent great Atlantic Sargassum belt (GASB) has been observed in satellite imagery since 2011, often extending from West Africa to the Gulf of Mexico. In June 2018, the 8850-kilometer GASB contained >20 million metric tons of Sargassum biomass. The spatial distribution of the GASB is mostly driven by ocean circulation. The bloom of 2011 might be a result of Amazon River discharge in previous years, but recent increases and interannual variability after 2011 appear to be driven by upwelling off West Africa during boreal winter and by Amazon River discharge during spring and summer, indicating a possible regime shift and raising the possibility that recurrent blooms in the tropical Atlantic and Caribbean Sea may become the new norm.
more »
« less
- Award ID(s):
- 1737078
- PAR ID:
- 10126160
- Date Published:
- Journal Name:
- Science
- Volume:
- 365
- Issue:
- 6448
- ISSN:
- 0036-8075
- Page Range / eLocation ID:
- 83 to 87
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The Great Atlantic Sargassum Belt (GASB) first appeared in 2011 and quickly became the largest interconnected floating biome globally. Sargassum spp. requires both phosphorus (P) and nitrogen (N) for growth, yet the sources fueling the GASB are unclear. Here, we use coral–bound nitrogen isotopes from six coral cores to reconstruct N2 fixation, the primary source of bioavailable N to the surface ocean across the wider Caribbean over the past 120 years. Our data indicate that changes in N2 fixation were controlled by multidecadal and interannual changes in the supply of excess P from equatorial upwelling in the Atlantic. We show that the supply of P from equatorial upwelling and N from the N2 fixation response can explain the extent of the GASB since 2011. # Equatorial upwelling of phosphorus drives Atlantic N~2~ fixation and *Sargassum* blooms This Excel file contains time series data combining coral geochemical records (δ¹⁵N and δ¹⁸O), climate indices, Sargassum biomass, and major riverine outflows. The dataset integrates multiple spatially distributed records to examine long-term variability in nutrient dynamics, climate forcing, and ecological responses in the Caribbean and tropical Atlantic. Values that were not available or are missing are indicated as N/A. ## Column Reference Table File: Caribbean_data_for_DRYAD.xlsx | Column Name | Description | | :----------------------------------- | :------------------------------------------------------------------------------------------------- | | **Year\_CR\_Turneffe** | Calendar year of sampling for coral records from Turneffe Atoll (Belize) and Cahuita (Costa Rica). | | **Cahuita Costa Rica\_d18O\_ts** | Coral δ¹⁸O time series from Cahuita, Costa Rica (proxy for SST and freshwater input). | | **d15N\_CR** | Coral-bound δ¹⁵N from Cahuita, Costa Rica (proxy for nitrogen source/processing). | | **Turneffe Atoll\_d18O\_ts** | Coral δ¹⁸O time series from Turneffe Atoll, Belize. | | **d15N\_Turneffe** | Coral-bound δ¹⁵N from Turneffe Atoll. | | **Date\_MQ** | Sampling date for Martinique (MQ) site. | | **d18O\_MQ** | Coral δ¹⁸O from Martinique. | | **d15N\_MQ** | Coral δ¹⁵N from Martinique. | | **Year Bermuda** | Calendar year for Bermuda coral samples. | | **d15N Bermuda** | Coral δ¹⁵N from Bermuda. | | **Year\_CUBA** | Calendar year for Cuban coral records. | | **d15N\_CUBA** | Coral δ¹⁵N from Cuba. | | **d15N\_Mexico** | Coral δ¹⁵N from Mexico. | | **Year\_Tobago** | Calendar year for Tobago coral samples. | | **d15N\_Tobago** | Coral δ¹⁵N from Tobago. | | **Year AMM** | Year corresponding to Atlantic Meridional Mode (AMM) values. | | **AMM\_SST** | Sea Surface Temperature anomalies associated with the AMM. | | **AMM\_Wind** | Wind anomalies associated with the AMM. | | **AMO** | Atlantic Multidecadal Oscillation index value. | | **average\_year** | Averaged year across all coral records included. | | **AVERAGE\_rescaled** | Composite δ¹⁵N record rescaled across sites. | | **error\_propagated** | Propagated error estimate for the rescaled average. | | **AVERAGE\_rescaled\_noCR\_BM\_TB** | Rescaled δ¹⁵N average excluding Costa Rica, Bermuda, and Tobago. | | **error\_propagated2** | Propagated error for the reduced-site average. | | **Months Sargassum** | Month of Sargassum observation. | | **Monthly Sargassum biomass (tons)** | Monthly biomass estimates of pelagic Sargassum (tons). | | **Year\_SST\_SSS** | Year corresponding to SST/SSS data. | | **SST\_10-20N\_20-60W** | Sea Surface Temperature average over 10–20°N, 20–60°W. | | **SSS\_10-20N\_20-60W** | Sea Surface Salinity average over the same region. | | **U\_windstress\_10\_20N\_58\_62W** | Zonal wind stress (10–20°N, 58–62°W). | | **windspeed\_0\_20N\_20\_50W** | Mean wind speed (0–20°N, 20–50°W). | | **Geo\_u\_12\_18N\_60\_80W (CC)** | Geostrophic zonal velocity (12–18°N, 60–80°W), Caribbean Current proxy. | | **DU\_scav\_areaweight** | Dust deposition (scavenging flux, area-weighted). | | **DU\_ddep\_areaweight** | Dust dry deposition (area-weighted). | | **BC\_scav\_areaweight** | Black carbon scavenging flux (area-weighted). | | **Bc\_ddep\_areaweight** | Black carbon dry deposition (area-weighted). | | **BC\_total\_areaweight** | Total black carbon deposition (area-weighted). | | **DU\_total\_areaweight** | Total dust deposition (area-weighted). | | **Obidos\_Amazon\_m3\_s** | Amazon River discharge at Óbidos station (m³/s). | | **Ciudad Bolivar\_Orinoco\_m3\_s** | Orinoco River discharge at Ciudad Bolívar (m³/s). | | **Year Pstar** | Year corresponding to P\* (phosphorus excess) record. | | **Pstar** | Phosphorus excess (indicator of nutrient balance, micro Molar). | | **Amazon\_outflow\_date** | Date of Amazon outflow measurement. | | **Amazon\_outflow\_km3** | Amazon River outflow volume (km³). | | **Orinoco\_outflow\_date** | Date of Orinoco outflow measurement. | | **Orinoco\_outflow\_km3** | Orinoco River outflow volume (km³). | Links to other publicly accessible locations of the data: * [https://climexp.knmi.nl](http://...) Data was derived from the following sources: * Climate Explorer was used for gridded satellite-derived products (SST, SSS, windspeed, windstress) by using the geographical extent as indicated in the manuscript ## Code/Software No software was used for data analysis, and the codes used for figures and data analyses are available on GitHub ([https://github.com/marinejon/](https://github.com/marinejon/))more » « less
-
Abstract The oceanographic ecology of pelagicSargassum, and the means by which these floating macroalgae thrive in the nutrient-poor waters of the open ocean, have been studied for decades. Beginning in 2011, the Great AtlanticSargassumBelt (GASB) emerged, withSargassumproliferating in the tropical Atlantic and Caribbean where it had not previously been abundant. Here we show that the nutritional status ofSargassumin the GASB is distinct, with higher nitrogen and phosphorus content than populations residing in its Sargasso Sea habitat. Moreover, we find that variations in arsenic content ofSargassumreflect phosphorus limitation, following a hyperbolic relationship predicted from Michaelis-Menten nutrient uptake kinetics. Although the sources of nutrients fueling the GASB are not yet clear, our results suggest that nitrogen and phosphorus content ofSargassum, together with its isotopic composition, can be used to identify those sources, whether they be atmospheric, oceanic, or riverine in origin.more » « less
-
Abstract The Virgin Islands basin (VIB) includes several Marine Protected Areas (MPAs) of interest as biologically unique spawning aggregation sites. The ecological structure in and around these MPAs is regulated by several factors, including changes in near‐surface water properties. Anomalously low near‐surface salinity is observed in the VIB during April 2009/2011, and March 2010, with a salinity signature consistent with Amazon plume waters. Other low salinity events in the region are found during 2007–2017 using output from an ocean reanalysis. The reanalysis shows that horizontal salinity advection explains near‐surface salinity variability in the VIB to a high degree, including events observed in the in situ measurements. We use a Lagrangian Particle tracking model to track particles over the 2007–2017 period and identify the source and pathways of water imports to the VIB. We describe three pathways. The northernmost one is often associated with advection of salty Atlantic waters. The two southernmost paths are associated with advection of low salinity waters from the Amazon into the VIB. The latter two pathways arrive to the Caribbean Sea as described in previous studies on low salinity advection to the wider Caribbean from the Amazon River; we find that once in the Caribbean Sea, the low salinity water makes its way into the VIB when steered northward by mesoscale features. This results in Amazon River waters regulating salinity variability in the VIB during April–November. During December–March, when mesoscale activity is at its minimum, the Atlantic inflow regulates the salinity variability within the VIB instead.more » « less
-
Abstract The Tocantins River contributes ∼5% of the total flux of water to the Amazon River plume in the Atlantic Ocean. Here, we evaluate monthly variability in the composition and abundance of carbon, nitrogen, and suspended sediment in the lower reaches of the Tocantins River from 2014 to 2016. Dissolved organic carbon concentrations generally increased during periods of high discharge and are ∼1.5 times lower than average concentrations at the mouth of the Amazon River. Dissolved inorganic carbon similarly increased during periods of high discharge. Total dissolved nitrogen and individual nitrogen species followed a similar temporal pattern, increasing during high water.predominated the dissolved inorganic nitrogen pool, followed by, and, characteristic of environments with a relatively low anthropogenic impact. Dissolved fractions represented 92% of the total carbon exported and 78% of the total nitrogen exported. The suspended particulate sediment flux was 2.72 × 106 t yr−1, with fine suspended sediment dominating (71.3%). Concentrations of carbon relative to nitrogen indicate a primarily terrigenous source of organic matter and CO2derived from in situ respiration of this material during the rainy season and a primarily algal/bacterial source of organic matter during the dry season. Considering past estimates of dissolved carbon and nitrogen fluxes from the Amazon River to the Atlantic Ocean, the Tocantins River contributes 3% and 3.7% to total fluxes to the Amazon River plume region, respectively. While this contribution is relatively small, it may be influenced by future changes to the basin's land use and hydrology.more » « less
An official website of the United States government

