Abstract BackgroundComputational approaches in STEM foster creative extrapolations of ideas that extend the bounds of human perception, processing, and sense-making. Inviting teachers to explore computational approaches in STEM presents opportunities to examine shifting relationships to inquiry that support transdisciplinary learning in their classrooms. Similarly, play has long been acknowledged as activity that supports learners in taking risks, exploring the boundaries and configurations of existing structures, and imagining new possibilities. Yet, play is often overlooked as a crucial element of STEM learning, particularly for adolescents and adults. In this paper, we explorecomputational playas an activity that supports teachers’ transdisciplinary STEM learning. We build from an expansive notion of computational activity that involves jointly co-constructing and co-exploring rule-based systems in conversation with materials, collaborators, and communities to work towards jointly defined goals. We situate computation within STEM-rich making as a playful context for engaging in authentic, creative inquiry. Our research asksWhat are the characteristics of play and computation within computational play? And, in what ways does computational play contribute to teachers’ transdisciplinary learning? ResultsTeachers from grades 3–12 participated in a professional learning program that centered playful explorations of materials and tools using computational approaches: making objects based on rules that produce emergent behaviors and iterating on those rules to observe the effects on how the materials behaved. Using a case study and descriptions of the characteristics of computational play, our results show how familiarity of materials and the context of play encouraged teachers to engage in transdisciplinary inquiry, to ask questions about how materials behave, and to renegotiate their own relationships to disciplinary learning as they reflected on their work. ConclusionsWe argue computational play is a space of wonderment where iterative conversations with materials create opportunities for learners to author forms of transdisciplinary learning. Our results show how teachers and students can learn together in computational play, and we conclude this work can contribute to ongoing efforts in the design of professional and transdisciplinary learning environments focused on the intersections of materiality, play, and computation.
more »
« less
Paper mechatronics: present and future
Creative iterative development over the past several years has generated an extensive set of computational tools, learning resources, and materials in the realm of paper mechatronics - an educational craft and design approach that weaves computational and mechanical elements into established traditions of children's construction with paper. Here, we both reflect upon our past and recent work of paper mechatronics, then look to the near- to medium-term future to speculate upon both the emerging trends in technology design and expanding learning potential of this medium for children along material, spatial, and temporal dimensions. We summarize lessons learned through various children's workshops with our materials; and we use these lessons as a foundation upon which to create a wide variety of novel tools and activities in educational papercrafting. We speculate upon the frontiers of this work based on current convergences and shifts in tangible creative computational media.
more »
« less
- Award ID(s):
- 1735836
- PAR ID:
- 10126234
- Date Published:
- Journal Name:
- IDC '18 Proceedings of the 17th ACM Conference on Interaction Design and Children
- Page Range / eLocation ID:
- 389 to 395
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Fostering data literacy has largely been the domain of formal educational systems and export-oriented tools. Informal educational approaches, such as games or family activities, may overcome barriers to engaging with data by fostering data literacy through casual engagement. This work in progress explores how informal learning through creation and play with interactive data representations (physicalizations) can foster increased literacy and engagement with data. We outline a series of DIY paper charts using AR markers and everyday materials to help children interact and explore data through the creative process of making.more » « less
-
While there is a growing body of research that explores the integration of music and coding in learning environments, much of this work has either emphasized the technical aspects of computer language design or music as a motivational context within which to learn computer science concepts. In this paper, we report on a study in which five undergraduate students with experience in both music and coding completed two creative musical tasks: one using conventional instruments and tools and one using Python code in an online music + coding environment. Inspired by the work of Christopher Small (1998. Musicking: The Meanings of Performing and Listening. University Press of New England), we describe music + coding as a set of interlocking processes which we call computational musicking and explore how practices from both domains are reimagined in this new hybrid context. We introduce semiotic theories of translation and transcription to make sense of the computational musicking process and describe strategies that participants devised in their creative process.more » « less
-
To make computer science (CS) more equitable, many educational efforts are shifting foci from access and content understanding to include identification, agency, and social change. As part of these efforts, we look at how learners perceive themselves in relation to what they believe CS is and what it means to participate in CS. Informed by three design lenses, unblackboxing, culturally responsive computing, and creative production, we designed a physical computing kit and activities. Drawing from qualitative analysis of interviews, artifacts, and observation of six young people in a weeklong summer workshop, we report on the experiences of two young Black women designers. We found that using these materials young people were able to: leverage personal goals and prior experiences in computing work; feel as if they were figuring out computing systems; and recognize computational technologies as created by people for particular purposes. We observed that while the mix of materials and activities created some frustration for participants, it also prompted processes of community building and inquiry. We discuss implications for design of computational tools in equity-centered CS education and pose seamfulness as an emergent heuristic when designing for learning that engages young people with the social, not just material, systems of computing.more » « less
-
Our work aims to increase the collaborative ability of college students in computer science classrooms where students must work towards a shared goal with peers from different backgrounds and abilities. Our work focuses specifically on leveraging high-quality collaborative design to bridge the gap between fiber arts and robotics by enlightening students to their shared foundations in mathematics and computational thinking. We achieve this goal through the design of SPEERLoom (Semi-automated Pattern Executing Educational Robotic Loom), a new open-source Jacquard loom kit designed to foster students' exploration of weaving, mechatronics, mathematics, and computational thinking. In this demonstration we present SPEERLoom and allow the exploration of a sample lesson using the loom.more » « less
An official website of the United States government

