skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Clocking the formation of today’s largest galaxies: wide field integral spectroscopy of brightest cluster galaxies and their surroundings
ABSTRACT The formation and evolution of local brightest cluster galaxies (BCGs) is investigated by determining the stellar populations and dynamics from the galaxy core, through the outskirts and into the intracluster light (ICL). Integral spectroscopy of 23 BCGs observed out to $$4\, r_{e}$$ is collected and high signal-to-noise regions are identified. Stellar population synthesis codes are used to determine the age, metallicity, velocity, and velocity dispersion of stars within each region. The ICL spectra are best modelled with populations that are younger and less metal-rich than those of the BCG cores. The average BCG core age of the sample is $$\rm 13.3\pm 2.8\, Gyr$$ and the average metallicity is $$\rm [Fe/H] = 0.30\pm 0.09$$, whereas for the ICL the average age is $$\rm 9.2\pm 3.5\, Gyr$$ and the average metallicity is $$\rm [Fe/H] = 0.18\pm 0.16$$. The velocity dispersion profile is seen to be rising or flat in most of the sample (17/23), and those with rising values reach the value of the host cluster’s velocity dispersion in several cases. The most extended BCGs are closest to the peak of the cluster’s X-ray luminosity. The results are consistent with the idea that the BCG cores and inner regions formed quickly and long ago, with the outer regions and ICL forming more recently, and continuing to assemble through minor merging. Any recent star formation in the BCGs is a minor component, and is associated with the cluster cool core status.  more » « less
Award ID(s):
1814375
PAR ID:
10126257
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
491
Issue:
2
ISSN:
0035-8711
Page Range / eLocation ID:
p. 2617-2638
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT We investigate the spectroscopic properties of 85 brightest cluster galaxies (BCGs) and their companions observed with the SDSS MaNGA integral field unit. Galaxy redshifts are between 0.08 < z < 0.15, allowing for a field-of-view up to 80 × 80 kpc. For the main galaxies: the average age of the BCG cores is 7.66$$\, \pm \,$$1.36 Gyr with no significant gradient out to $$2\, R_ {e}$$; the average metallicity of the BCG cores is $$[Z/H]=0.23\, \pm \, 0.03$$ with a negative gradient of Δ[Z/H]/Δ(R/Re)  = –0.14$$\, \pm \, 0.09$$ which flattens beyond $$1.2\, R_ {e}$$. Velocity dispersion gradients are mostly flat, but a few positive slopes are seen in the most massive galaxies. Emission lines are present in 12 of the BCGs, most often confined to the central $$\sim 2\,$$ kpc with emission line ratios well-described by a LINER or AGN excitation source. There are 78 companion galaxies identified and 9 have nebular emission lines that indicate recent star formation. The companions with flux ratios of 4:1 and 20:1 within 30 kpc of their BCG’s core are studied. The companion galaxies have a median age of 7.65$$\, \pm \,$$1.55 Gyr and are high-metallicity systems, with a median [Z/H] = 0.17  ±  0.07. Close spectroscopic companions with higher merging probabilities have an average merging time of 0.5 ± 0.2 Gyr. The average merger rate is 0.08$$\, \pm \, 0.12 \,$$ Gyr−1 for 4:1 companions and 0.26$$\, \pm \, 0.22 \,$$ Gyr−1 for 20:1 companions, allowing for an increase in mass of 2.3$$\, \pm \,$$3.4 per cent Gyr−1 and 3.5$$\, \pm \,$$3.2 per cent Gyr−1, respectively. 
    more » « less
  2. Abstract We use IllustrisTNG simulations to explore the dynamic scaling relation between massive clusters and their—central—brightest cluster galaxies (BCGs). The IllustrisTNG-300 simulation we use includes 280 massive clusters from the z = 0 snapshot with M 200 > 10 14 M ⊙ , enabling a robust statistical analysis. We derive the line-of-sight velocity dispersion of the stellar particles of the BCGs ( σ *,BCG ), analogous to the observed BCG stellar velocity dispersion. We also compute the subhalo velocity dispersion to measure the cluster velocity dispersion ( σ cl ). Both σ *,BCG and σ cl are proportional to the cluster halo mass, but the slopes differ slightly. Thus, like the observed relation, σ *,BCG / σ cl declines as a function of σ cl , but the scatter is large. We explore the redshift evolution of the σ *,BCG − σ cl scaling relation for z ≲ 1 in a way that can be compared directly with observations. The scaling relation has a similar slope at high redshift, but the scatter increases because of the large scatter in σ *,BCG . The simulations imply that high-redshift BCGs are dynamically more complex than their low-redshift counterparts. 
    more » « less
  3. Abstract We explore the redshift evolution of the dynamical properties of massive clusters and their brightest cluster galaxies (BCGs) at z < 2 based on the IllustrisTNG-300 simulation. We select 270 massive clusters with M 200 < 10 14 M ⊙ at z = 0 and trace their progenitors based on merger trees. From 67 redshift snapshots covering z < 2, we compute the 3D subhalo velocity dispersion as a cluster velocity dispersion ( σ cl ). We also calculate the 3D stellar velocity dispersion of the BCGs ( σ *,BCG ). Both σ cl and σ *,BCG increase as the universe ages. The BCG velocity dispersion grows more slowly than the cluster velocity dispersion. Furthermore, the redshift evolution of the BCG velocity dispersion shows dramatic changes at some redshifts resulting from dynamical interaction with neighboring galaxies (major mergers). We show that σ *,BCG is comparable with σ cl at z > 1, offering an interesting observational test. The simulated redshift evolution of σ cl and σ *,BCG generally agrees with an observed cluster sample for z < 0.3, but with large scatter. Future large spectroscopic surveys reaching to high redshift will test the implications of the simulations for the mass evolution of both clusters and their BCGs. 
    more » « less
  4. null (Ed.)
    ABSTRACT We constrain the evolution of the brightest cluster galaxy plus intracluster light (BCG + ICL) using an ensemble of 42 galaxy groups and clusters that span redshifts of z = 0.05−1.75 and masses of M500,c= 2 × 1013−1015 M⊙. Specifically, we measure the relationship between the BCG + ICL stellar mass M⋆ and M500,c at projected radii 10 < r < 100 kpc for three different epochs. At intermediate redshift ($$\bar{z}=0.40$$), where we have the best data, we find M⋆ ∝ M500,c0.48 ± 0.06. Fixing the exponent of this power law for all redshifts, we constrain the normalization of this relation to be 2.08 ± 0.21 times higher at $$\bar{z}=0.40$$ than at high redshift ($$\bar{z}=1.55$$). We find no change in the relation from intermediate to low redshift ($$\bar{z}=0.10$$). In other words, for fixed M500,c, M⋆ at 10 < r < 100 kpc increases from $$\bar{z}=1.55$$ to $$\bar{z}=0.40$$ and not significantly thereafter. Theoretical models predict that the physical mass growth of the cluster from z = 1.5 to z = 0 within r500,c is 1.4×, excluding evolution due to definition of r500,c. We find that M⋆ within the central 100 kpc increases by ∼3.8× over the same period. Thus, the growth of M⋆ in this central region is more than a factor of 2 greater than the physical mass growth of the cluster as a whole. Furthermore, the concentration of the BCG + ICL stellar mass, defined by the ratio of stellar mass within 10 kpc to the total stellar mass within 100 kpc, decreases with increasing M500,c at all z. We interpret this result as evidence for inside–out growth of the BCG + ICL over the past 10 Gyr, with stellar mass assembly occurring at larger radii at later times. 
    more » « less
  5. ABSTRACT Galaxy clusters have a triaxial matter distribution. The weak-lensing signal, an important part in cosmological studies, measures the projected mass of all matter along the line of sight, and therefore changes with the orientation of the cluster. Studies suggest that the shape of the brightest cluster galaxy (BCG) in the centre of the cluster traces the underlying halo shape, enabling a method to account for projection effects. We use 324 simulated clusters at four redshifts between 0.1 and 0.6 from ‘The Three Hundred Project’ to quantify correlations between the orientation and shape of the BCG and the halo. We find that haloes and their embedded BCGs are aligned, with an average ∼20 degree angle between their major axes. The bias in weak lensing cluster mass estimates correlates with the orientation of both the halo and the BCG. Mimicking observations, we compute the projected shape of the BCG, as a measure of the BCG orientation, and find that it is most strongly correlated to the weak-lensing mass for relaxed clusters. We also test a 2D cluster relaxation proxy measured from BCG mass isocontours. The concentration of stellar mass in the projected BCG core compared to the total stellar mass provides an alternative proxy for the BCG orientation. We find that the concentration does not correlate to the weak-lensing mass bias, but does correlate with the true halo mass. These results indicate that the BCG shape and orientation for large samples of relaxed clusters can provide information to improve weak-lensing mass estimates. 
    more » « less