Abstract The detection of multilayer clouds in the atmosphere can be particularly challenging from passive visible and infrared imaging radiometers since cloud boundary information is limited primarily to the topmost cloud layer. Yet detection of low clouds in the atmosphere is important for a number of applications, including aviation nowcasting and general weather forecasting. In this work, we develop pixel-based machine learning–based methods of detecting low clouds, with a focus on improving detection in multilayer cloud situations and specific attention given to improving the Cloud Cover Layers (CCL) product, which assigns cloudiness in a scene into vertical bins. The random forest (RF) and neural network (NN) implementations use inputs from a variety of sources, including GOES Advanced Baseline Imager (ABI) visible radiances, infrared brightness temperatures, auxiliary information about the underlying surface, and relative humidity (which holds some utility as a cloud proxy). Training and independent validation enlists near-global, actively sensed cloud boundaries from the radar and lidar systems on board theCloudSatandCALIPSOsatellites. We find that the RF and NN models have similar performances. The probability of detection (PoD) of low cloud increases from 0.685 to 0.815 when using the RF technique instead of the CCL methodology, while the false alarm ratio decreases. The improved PoD of low cloud is particularly notable for scenes that appear to be cirrus from an ABI perspective, increasing from 0.183 to 0.686. Various extensions of the model are discussed, including a nighttime-only algorithm and expansion to other satellite sensors. Significance StatementUsing satellites to detect the heights of clouds in the atmosphere is important for a variety of weather applications, including aviation weather forecasting. However, detecting low clouds can be challenging if there are other clouds above them. To address this, we have developed machine learning–based models that can be used with passive satellite instruments. These models use satellite observations at visible and infrared wavelengths, an estimate of relative humidity in the atmosphere, and geographic and surface-type information to predict whether low clouds are present. Our results show that these models have significant skill at predicting low clouds, even in the presence of higher cloud layers.
more »
« less
Daytime Rainy Cloud Detection and Convective Precipitation Delineation Based on a Deep Neural Network Method Using GOES-16 ABI Images
Precipitation, especially convective precipitation, is highly associated with hydrological disasters (e.g., floods and drought) that have negative impacts on agricultural productivity, society, and the environment. To mitigate these negative impacts, it is crucial to monitor the precipitation status in real time. The new Advanced Baseline Imager (ABI) onboard the GOES-16 satellite provides such a precipitation product in higher spatiotemporal and spectral resolutions, especially during the daytime. This research proposes a deep neural network (DNN) method to classify rainy and non-rainy clouds based on the brightness temperature differences (BTDs) and reflectances (Ref) derived from ABI. Convective and stratiform rain clouds are also separated using similar spectral parameters expressing the characteristics of cloud properties. The precipitation events used for training and validation are obtained from the IMERG V05B data, covering the southeastern coast of the U.S. during the 2018 rainy season. The performance of the proposed method is compared with traditional machine learning methods, including support vector machines (SVMs) and random forest (RF). For rainy area detection, the DNN method outperformed the other methods, with a critical success index (CSI) of 0.71 and a probability of detection (POD) of 0.86. For convective precipitation delineation, the DNN models also show a better performance, with a CSI of 0.58 and POD of 0.72. This automatic cloud classification system could be deployed for extreme rainfall event detection, real-time forecasting, and decision-making support in rainfall-related disasters.
more »
« less
- Award ID(s):
- 1835507
- PAR ID:
- 10126312
- Date Published:
- Journal Name:
- Remote Sensing
- Volume:
- 11
- Issue:
- 21
- ISSN:
- 2072-4292
- Page Range / eLocation ID:
- 2555
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract. An ability to accurately detect convective regions isessential for initializing models for short-term precipitation forecasts.Radar data are commonly used to detect convection, but radars that providehigh-temporal-resolution data are mostly available over land, and the qualityof the data tends to degrade over mountainous regions. On the other hand,geostationary satellite data are available nearly anywhere and in near-realtime. Current operational geostationary satellites, the GeostationaryOperational Environmental Satellite-16 (GOES-16) and Satellite-17, provide high-spatial- and high-temporal-resolution data but only of cloud top properties; 1 min data, however, allow us to observe convection from visible andinfrared data even without vertical information of the convective system.Existing detection algorithms using visible and infrared data look forstatic features of convective clouds such as overshooting top or lumpy cloudtop surface or cloud growth that occurs over periods of 30 min to anhour. This study represents a proof of concept that artificial intelligence(AI) is able, when given high-spatial- and high-temporal-resolution data fromGOES-16, to learn physical properties of convective clouds and automate thedetection process. A neural network model with convolutional layers is proposed to identifyconvection from the high-temporal resolution GOES-16 data. The model takesfive temporal images from channel 2 (0.65 µm) and 14 (11.2 µm) asinputs and produces a map of convective regions. In order to provideproducts comparable to the radar products, it is trained against Multi-RadarMulti-Sensor (MRMS), which is a radar-based product that uses a rathersophisticated method to classify precipitation types. Two channels fromGOES-16, each related to cloud optical depth (channel 2) and cloud topheight (channel 14), are expected to best represent features of convectiveclouds: high reflectance, lumpy cloud top surface, and low cloud toptemperature. The model has correctly learned those features of convectiveclouds and resulted in a reasonably low false alarm ratio (FAR) and highprobability of detection (POD). However, FAR and POD can vary depending onthe threshold, and a proper threshold needs to be chosen based on thepurpose.more » « less
-
Satellite sensors have been widely used for precipitation retrieval, and a number of precipitation retrieval algorithms have been developed using observations from various satellite sensors. The current operational rainfall rate quantitative precipitation estimate (RRQPE) product from the geostationary operational environmental satellite (GOES) offers full disk rainfall rate estimates based on the observations from the advanced baseline imager (ABI) aboard the GOES-R series. However, accurate precipitation retrieval using satellite sensors is still challenging due to the limitations on spatio-temporal sampling of the satellite sensors and/or the uncertainty associated with the applied parametric retrieval algorithms. In this article, we propose a deep learning framework for precipitation retrieval using the combined observations from the ABI and geostationary lightning mapper (GLM) on the GOES-R series to improve the current operational RRQPE product. Particularly, the proposed deep learning framework is composed of two deep convolutional neural networks (CNNs) that are designed for precipitation detection and quantification. The cloud-top brightness temperature from multiple ABI channels and the lightning flash rate from the GLM measurement are used as inputs to the deep learning framework. To train the designed CNNs, the precipitation product multiradar multi-sensor (MRMS) system from the National Oceanic and Atmospheric Administration (NOAA) is used as target labels to optimize the network parameters. The experimental results show that the precipitation retrieval performance of the proposed framework is superior to the currently operational GOES RRQPE product in the selected study domain, and the performance is dramatically enhanced after incorporating the lightning data into the deep learning model. Using the independent MRMS product as a reference, the deep learning model can reduce the retrieval uncertainty in the operational RRQPE product by at least 31% in terms of the mean squared error and normalized mean absolute error, and the improvement is more significant in moderate to heavy rain regions. Therefore, the proposed deep learning framework can potentially serve as an alternative approach for GOES precipitation retrievals.more » « less
-
Abstract Most climate models still suffer large warm and dry summer biases in the central United States (CUS). As a solution, we improved cumulus parameterization to represent 1) the lifting effect of small-scale rising motions associated with Great Plains low-level jets and midtropospheric perturbations by defining the cloud base at the level of condensation, 2) the constraint of the cumulus entrainment rate depending on the boundary layer depth, and 3) the temperature-dependent cloud-to-rainwater conversion rate. These improvements acted to (i) trigger mesoscale convective systems in unfavorable environmental conditions to enhance total rainfall amount, (ii) lower cloud base and increase cloud depth to increase low-level clouds and reduce surface shortwave radiation, (iii) suppress penetrative cumuli from shallow boundary layers to remedy the overestimation of precipitation frequency, and (iv) increase water detrainment to form sufficient cirrus clouds and balanced outgoing longwave radiation. Much of these effects were nonlocal and nonlinear, where more frequent but weaker convective rainfall led to stronger (and sometimes more frequent) large-scale precipitation remotely. Together, they produced consistently heavier precipitation and colder temperature with a realistic atmospheric energy balance, essentially eliminating the CUS warm and dry biases through robust physical mechanisms.more » « less
-
Abstract A process‐oriented diagnostic (POD) is introduced to measure the thermodynamic sensitivity of convection in climate models. The physical basis for this POD is the observed tropical precipitation‐buoyancy relationship. Fast timescale precipitation and thermodynamic profiles over oceans are POD inputs; these are used to evaluate model precipitation sensitivities to lower‐tropospheric measures of subsaturation (SUBSATL) and undilute conditional instability. The POD is used to diagnose 24 coupled model inter‐comparison project phase six (CMIP6) models. Half the diagnosed models exhibit SUBSATLsensitivity close to observed, while six models are excessively sensitive. Parameter perturbation experiments with the Community Atmospheric Model (CAM5) support the physical basis for the POD. Increasing entrainment increases the CAM5 precipitation SUBSATLsensitivity. Switching off the convective scheme or modifying the convective trigger to be oversensitive to moisture reproduces the excessive SUBSATLsensitivity seen among CMIP6 models. Models with excessive SUBSATLsensitivities have precipitating mean states closer to grid‐scale saturation and likely support more grid‐scale convection.more » « less