skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Insights from mercury stable isotopes on terrestrial–atmosphere exchange of Hg(0) in the Arctic tundra
Abstract. The tundra plays a pivotal role in the Arctic mercury(Hg) cycle by storing atmospheric Hg deposition and shuttling it to theArctic Ocean. A recent study revealed that 70 % of the atmospheric Hgdeposition to the tundra occurs through gaseous elemental mercury (GEM or Hg(0))uptake by vegetation and soils. Processes controlling land–atmosphereexchange of Hg(0) in the Arctic tundra are central, but remainunderstudied. Here, we combine Hg stable isotope analysis of Hg(0) in theatmosphere, interstitial snow air, and soil pore air, with Hg(0) fluxmeasurements in a tundra ecosystem at Toolik Field Station in northernAlaska (USA). In the dark winter months, planetary boundary layer (PBL)conditions and Hg(0) concentrations were generally stable throughout the dayand small Hg(0) net deposition occurred. In spring, halogen-inducedatmospheric mercury depletion events (AMDEs) occurred, with the fastre-emission of Hg(0) after AMDEs resulting in net emission fluxes of Hg(0).During the short snow-free growing season in summer, vegetation uptake ofatmospheric Hg(0) enhanced atmospheric Hg(0) net deposition to the Arctictundra. At night, when PBL conditions were stable, ecosystem uptake ofatmospheric Hg(0) led to a depletion of atmospheric Hg(0). The night-timedecline of atmospheric Hg(0) was concomitant with a depletion of lighterHg(0) isotopes in the atmospheric Hg pool. The enrichment factor,ε202Hgvegetationuptake=-4.2 ‰ (±1.0 ‰) was consistentwith the preferential uptake of light Hg(0) isotopes by vegetation. Hg(0)flux measurements indicated a partial re-emission of Hg(0) during daytime,when solar radiation was strongest. Hg(0) concentrations in soil pore airwere depleted relative to atmospheric Hg(0) concentrations, concomitant withan enrichment of lighter Hg(0) isotopes in the soil pore air, ε202Hgsoilair-atmosphere=-1.00 ‰(±0.25 ‰) and E199Hgsoilair-atmosphere=0.07 ‰ (±0.04 ‰). Thesefirst Hg stable isotope measurements of Hg(0) in soil pore air areconsistent with the fractionation previously observed during Hg(0) oxidationby natural humic acids, suggesting abiotic oxidation as a cause for observedsoil Hg(0) uptake. The combination of Hg stable isotope fingerprints withHg(0) flux measurements and PBL stability assessment confirmed a dominantrole of Hg(0) uptake by vegetation in the terrestrial–atmosphere exchange ofHg(0) in the Arctic tundra.  more » « less
Award ID(s):
1848212
PAR ID:
10126416
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Biogeosciences
Volume:
16
Issue:
20
ISSN:
1726-4189
Page Range / eLocation ID:
4051 to 4064
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. To simulate global mercury (Hg) dynamics in chemical transport models (CTMs), surface-atmosphere exchange of gaseous elemental mercury, Hg 0 , is often parameterized based on resistance-based dry deposition schemes coupled with a re-emission function, mainly from soils. Despite extensive use of this approach, direct evaluations of this implementation against field observations of net Hg 0 exchange are lacking. In this study, we evaluate an existing net exchange parameterization (referred to here as the base model) by comparing modeled fluxes of Hg 0 to fluxes measured in the field using micrometeorological techniques. Comparisons were performed in two terrestrial ecosystems: a grassland site in Switzerland and an Arctic tundra site in Alaska, U.S., each including summer and winter seasons. The base model included the dry deposition and soil re-emission parameterizations from Zhang et al. (2003) and the global CTM GEOS-Chem, respectively. Comparisons of modeled and measured Hg 0 fluxes showed large discrepancies, particularly in the summer months when the base model overestimated daytime net deposition by approximately 9 and 2 ng m −2 h −1 at the grassland and tundra sites, respectively. In addition, the base model was unable to capture a measured nighttime net Hg 0 deposition and wintertime deposition. We conducted a series of sensitivity analyses and recommend that Hg simulations using CTMs: (i) reduce stomatal uptake of Hg 0 over grassland and tundra in models by a factor 5–7; (ii) increase nighttime net Hg 0 deposition, e.g. , by increasing ground and cuticular uptake by reducing the respective resistance terms by factors of 3–4 and 2–4, respectively; and (iii) implement a new soil re-emission parameterization to produce larger daytime emissions and lower nighttime emissions. We also compared leaf Hg 0 uptake over the growing season estimated by the dry deposition model against foliar Hg measurements, which revealed good agreement with the measured leaf Hg concentrations after adjusting the base model as suggested above. We conclude that the use of resistance-based models combined with the new soil re-emission flux parameterization is able to reproduce observed diel and seasonal patterns of Hg 0 exchange in these ecosystems. This approach can be used to improve model parameterizations for other ecosystems if flux measurements become available. 
    more » « less
  2. Terrestrial volcanism is known to emit mercury (Hg) into the atmosphere. However, despite many years of investigation, its net impact on the atmospheric Hg budget remains insufficiently constrained, in part because the transformations of Hg in volcanic plumes as they age and mix with background air are poorly understood. Here we report the observation of complete gaseous elemental mercury (GEM) depletion events in dilute and moderately aged (∼3–7 hours) volcanic plumes from Piton de la Fournaise on Réunion Island. While it has been suggested that co-emitted bromine could, once photochemically activated, deplete GEM in a volcanic plume, we measured low bromine concentrations in both the gas- and particle-phase and observed complete GEM depletion even before sunrise, ruling out a leading role of bromine chemistry here. Instead, we hypothesize that the GEM depletions were mainly caused by gas–particle interactions with sulfate-rich volcanic particles (mostly of submicron size), abundantly present in the dilute plume. We consider heterogeneous GEM oxidation and GEM uptake by particles as plausible manifestations of such a process and derive empirical rate constants. By extrapolation, we estimate that volcanic aerosols may scavenge 210 Mg y−1 (67–480 Mg y−1) of Hg from the atmosphere globally, acting effectively as atmospheric mercury sink. While this estimate is subject to large uncertainties, it highlights that Hg transformations in aging volcanic plumes must be better understood to determine the net impact of volcanism on the atmospheric Hg budget and Hg deposition pathways. 
    more » « less
  3. Abstract. Estuaries are a conduit of mercury (Hg) from watersheds to the coastal ocean, and salt marshes play an important role in coastal Hg cycling. Hg cycling in upland terrestrial ecosystems has been well studied, but processes in densely vegetated salt marsh ecosystems are poorly characterized. We investigated Hg dynamics in vegetation and soils in the Plum Island Sound estuary in Massachusetts, USA, and specifically assessed the role of marsh vegetation for Hg deposition and turnover. Monthly quantitative harvesting of aboveground biomass showed strong linear seasonal increases in Hg associated with plants, with a 4-fold increase in Hg concentration and an 8-fold increase in standing Hg mass from June (3.9 ± 0.2 µg kg−1 and 0.7 ± 0.4 µg m−2, respectively) to November (16.2 ± 2.0 µg kg−1 and 5.7 ± 2.1 µg m−2, respectively). Hg did not increase further in aboveground biomass after plant senescence, indicating physiological controls of vegetation Hg uptake in salt marsh plants. Hg concentrations in live roots and live rhizomes were 11 and 2 times higher than concentrations in live aboveground biomass, respectively. Furthermore, live belowground biomass Hg pools (Hg in roots and rhizomes, 108.1 ± 83.4 µg m−2) were more than 10 times larger than peak standing aboveground Hg pools (9.0 ± 3.3 µg m−2). A ternary mixing model of measured stable Hg isotopes suggests that Hg sources in marsh aboveground tissues originate from about equal contributions of root uptake (∼ 35 %), precipitation uptake (∼ 33 %), and atmospheric gaseous elemental mercury (GEM) uptake (∼ 32 %). These results suggest a more important role of Hg transport from belowground (i.e., roots) to aboveground tissues in salt marsh vegetation than upland vegetation, where GEM uptake is generally the dominant Hg source. Roots and soils showed similar isotopic signatures, suggesting that belowground tissue Hg mostly derived from soil uptake. Annual root turnover results in large internal Hg recycling between soils and plants, estimated at 58.6 µg m−2 yr−1. An initial mass balance of Hg indicates that the salt marsh presently serves as a small net Hg sink for environmental Hg of 5.2 µg m−2 yr−1. 
    more » « less
  4. Mercury (Hg), a neurotoxic heavy metal, is transferred to marine and terrestrial ecosystems through atmospheric transport. Recent studies have highlighted the role of vegetation uptake as a sink for atmospheric elemental mercury (Hg0) and a source of Hg to soils. However, the global magnitude of the Hg0 vegetation uptake flux is highly uncertain, with estimates ranging 1000–4000 Mg per year. To constrain this sink, we compare simulations in the chemical transport model GEOS-Chem with a compiled database of litterfall, throughfall, and flux tower measurements from 93 forested sites. The prior version of GEOS-Chem predicts median Hg0 dry deposition velocities similar to litterfall measurements from Northern hemisphere temperate and boreal forests (~0.03 cm s-1 yet it underestimates measurements from a flux tower study (0.04 cm s-1 vs. 0.07 cm s-1and Amazon litterfall (0.05 cm s-1 vs. 0.17 cm s-1). After revising the Hg0 reactivity within the dry deposition parametrization to match flux tower and Amazon measurements, GEOS-Chem displays improved agreement with the seasonality of atmospheric Hg0 observations in the Northern midlatitudes. Additionally, the modelled bias in Hg0 concentrations in South America decreases from +0.21 ng m-3 +0.05 ng m-3. We calculate a global flux of Hg0 dry deposition to land of 2276 Mg per year, approximately double previous model estimates. The Amazon rainforest contributes 29% of the total Hg0 land sink, yet continued deforestation and climate change threatens the rainforest's stability and thus its role as an important Hg sink. In an illustrative worst-case scenario where the Amazon is completely converted to savannah, GEOS-Chem predicts that an additional 283 Mg Hg per year would deposit to the ocean, where it can bioaccumulate in the marine food chain. Biosphere–atmosphere interactions thus play a crucial role in global Hg cycling and should be considered in assessments of future Hg pollution. 
    more » « less
  5. Abstract Soils are a principal global reservoir of mercury (Hg), a neurotoxic pollutant that is accumulating through anthropogenic emissions to the atmosphere and subsequent deposition to terrestrial ecosystems. The fate of Hg in global soils remains uncertain, however, particularly to what degree Hg is re-emitted back to the atmosphere as gaseous elemental mercury (GEM). Here we use fallout radionuclide (FRN) chronometry to directly measure Hg accumulation rates in soils. By comparing these rates with measured atmospheric fluxes in a mass balance approach, we show that representative Arctic, boreal, temperate, and tropical soils are quantitatively efficient at retaining anthropogenic Hg. Potential for significant GEM re-emission appears limited to a minority of coniferous soils, calling into question global models that assume strong re-emission of legacy Hg from soils. FRN chronometry poses a powerful tool to reconstruct terrestrial Hg accumulation across larger spatial scales than previously possible, while offering insights into the susceptibility of Hg mobilization from different soil environments. 
    more » « less