Abstract In this paper we study the cohomology of PEL-type Rapoport–Zink spaces associated to unramified unitary similitude groups over ℚ p {\operatorname{\mathbb{Q}}_{p}} in an odd number of variables. We extend the results of Kaletha–Minguez–Shin–White and Mok to construct a local Langlands correspondence for these groups and prove an averaging formula relating the cohomology of Rapoport–Zink spaces to this correspondence. We use this formula to prove the Kottwitz conjecture for the groups we consider.
more »
« less
A Tannakian Framework for G-displays and Rapoport–Zink Spaces
Abstract We develop a Tannakian framework for group-theoretic analogs of displays, originally introduced by Bültel and Pappas, and further studied by Lau. We use this framework to define Rapoport–Zink functors associated to triples $$(G,\{\mu \},[b])$$, where $$G$$ is a flat affine group scheme over $${\mathbb{Z}}_p$$ and $$\mu$$ is a cocharacter of $$G$$ defined over a finite unramified extension of $${\mathbb{Z}}_p$$. We prove these functors give a quotient stack presented by Witt vector loop groups, thereby showing our definition generalizes the group-theoretic definition of Rapoport–Zink spaces given by Bültel and Pappas. As an application, we prove a special case of a conjecture of Bültel and Pappas by showing their definition coincides with that of Rapoport and Zink in the case of unramified EL-type local Shimura data.
more »
« less
- Award ID(s):
- 1801352
- PAR ID:
- 10126548
- Publisher / Repository:
- Oxford University Press
- Date Published:
- Journal Name:
- International Mathematics Research Notices
- ISSN:
- 1073-7928
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Following a suggestion of Peter Scholze, we construct an action of G m ^ \widehat {\mathbb {G}_m} on the Katz moduli problem, a profinite-étale cover of the ordinary locus of the p p -adic modular curve whose ring of functions is Serre’s space of p p -adic modular functions. This action is a local, p p -adic analog of a global, archimedean action of the circle group S 1 S^1 on the lattice-unstable locus of the modular curve over C \mathbb {C} . To construct the G m ^ \widehat {\mathbb {G}_m} -action, we descend a moduli-theoretic action of a larger group on the (big) ordinary Igusa variety of Caraiani-Scholze. We compute the action explicitly on local expansions and find it is given by a simple multiplication of the cuspidal and Serre-Tate coordinates q q ; along the way we also prove a natural generalization of Dwork’s equation τ = log q \tau =\log q for extensions of Q p / Z p \mathbb {Q}_p/\mathbb {Z}_p by μ p ∞ \mu _{p^\infty } valid over a non-Artinian base. Finally, we give a direct argument (without appealing to local expansions) to show that the action of G m ^ \widehat {\mathbb {G}_m} integrates the differential operator θ \theta coming from the Gauss-Manin connection and unit root splitting, and explain an application to Eisenstein measures and p p -adic L L -functions.more » « less
-
null (Ed.)Let $$(G,\unicode[STIX]{x1D707})$$ be a pair of a reductive group $$G$$ over the $$p$$ -adic integers and a minuscule cocharacter $$\unicode[STIX]{x1D707}$$ of $$G$$ defined over an unramified extension. We introduce and study ‘ $$(G,\unicode[STIX]{x1D707})$$ -displays’ which generalize Zink’s Witt vector displays. We use these to define certain Rapoport–Zink formal schemes purely group theoretically, i.e. without $$p$$ -divisible groups.more » « less
-
null (Ed.)Abstract We study the l -adic cohomology of unramified Rapoport–Zink spaces of EL-type. These spaces were used in Harris and Taylor's proof of the local Langlands correspondence for $$\mathrm {GL_n}$$ and to show local–global compatibilities of the Langlands correspondence. In this paper we consider certain morphisms $$\mathrm {Mant}_{b, \mu }$$ of Grothendieck groups of representations constructed from the cohomology of these spaces, as studied by Harris and Taylor, Mantovan, Fargues, Shin and others. Due to earlier work of Fargues and Shin we have a description of $$\mathrm {Mant}_{b, \mu }(\rho )$$ for $$\rho $$ a supercuspidal representation. In this paper, we give a conjectural formula for $$\mathrm {Mant}_{b, \mu }(\rho )$$ for $$\rho $$ an admissible representation and prove it when $$\rho $$ is essentially square-integrable. Our proof works for general $$\rho $$ conditionally on a conjecture appearing in Shin's work. We show that our description agrees with a conjecture of Harris in the case of parabolic inductions of supercuspidal representations of a Levi subgroup.more » « less
An official website of the United States government
