skip to main content


Title: A Mixed Methods Approach to Understanding How Colleges, Universities, and Employers Prepare and Support Undergraduates in Engineering Internships. San Jose, CA, USA, 2018
Does engagement in high impact practices such as technical internships and undergraduate research influence engineering students’ career decisions and future plans? And how is learning that comes from these high impact practices related to “school learning”? These high impact educational practices have been shown to increase the rates of student engagement and retention in higher education. While access to and participation in these activities is often unsystematic across various institutions, these practices have been shown to benefit college students with diverse backgrounds and learner qualities. This paper establishes a context for understanding the characteristics and attitudes of students who participate in internships and undergraduate research by drawing from analyses of the first administration of the Engineering Majors Survey (EMS), a longitudinal study designed to examine engineering students’ career objectives related to creativity and innovation, and the experiences and attitudes that might influence those goals. In addition, using interview data from product development interns at a single engineering firm, we add insights into the specific skills that interns identify as learning in their internship and suggest connections between school-and-work learning. The more general picture of the impact of internship and research experiences (from the EMS), complemented with a “deep dive” into the learning that happens in internship experiences (from the interviews) provides a solid starting point for future exploration of how high impact practices such as internships and research experiences might be better integrated into a student’s educational development.  more » « less
Award ID(s):
1636442
NSF-PAR ID:
10126615
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
IEEE Frontiers in Education Conference (FIE)
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Does engagement in high impact practices such as technical internships and undergraduate research influence engineering students’ career decisions and future plans? And how is learning that comes from these high impact practices related to “school learning”? These high impact educational practices have been shown to increase the rates of student engagement and retention in higher education. While access to and participation in these activities is often unsystematic across various institutions, these practices have been shown to benefit college students with diverse backgrounds and learner qualities. This paper establishes a context for understanding the characteristics and attitudes of students who participate in internships and undergraduate research by drawing from analyses of the first administration of the Engineering Majors Survey (EMS), a longitudinal study designed to examine engineering students’ career objectives related to creativity and innovation, and the experiences and attitudes that might influence those goals. In addition, using interview data from product development interns at a single engineering firm, we add insights into the specific skills that interns identify as learning in their internship and suggest connections between school-and-work learning. The more general picture of the impact of internship and research experiences (from the EMS), complemented with a “deep dive” into the learning that happens in internship experiences (from the interviews) provides a solid starting point for future exploration of how high impact practices such as internships and research experiences might be better integrated into a student’s educational development. 
    more » « less
  2. Need/Motivation (e.g., goals, gaps in knowledge) The ESTEEM implemented a STEM building capacity project through students’ early access to a sustainable and innovative STEM Stepping Stones, called Micro-Internships (MI). The goal is to reap key benefits of a full-length internship and undergraduate research experiences in an abbreviated format, including access, success, degree completion, transfer, and recruiting and retaining more Latinx and underrepresented students into the STEM workforce. The MIs are designed with the goals to provide opportunities for students at a community college and HSI, with authentic STEM research and applied learning experiences (ALE), support for appropriate STEM pathway/career, preparation and confidence to succeed in STEM and engage in summer long REUs, and with improved outcomes. The MI projects are accessible early to more students and build momentum to better overcome critical obstacles to success. The MIs are shorter, flexibly scheduled throughout the year, easily accessible, and participation in multiple MI is encouraged. ESTEEM also establishes a sustainable and collaborative model, working with partners from BSCS Science Education, for MI’s mentor, training, compliance, and building capacity, with shared values and practices to maximize the improvement of student outcomes. New Knowledge (e.g., hypothesis, research questions) Research indicates that REU/internship experiences can be particularly powerful for students from Latinx and underrepresented groups in STEM. However, those experiences are difficult to access for many HSI-community college students (85% of our students hold off-campus jobs), and lack of confidence is a barrier for a majority of our students. The gap between those who can and those who cannot is the “internship access gap.” This project is at a central California Community College (CCC) and HSI, the only affordable post-secondary option in a region serving a historically underrepresented population in STEM, including 75% Hispanic, and 87% have not completed college. MI is designed to reduce inequalities inherent in the internship paradigm by providing access to professional and research skills for those underserved students. The MI has been designed to reduce barriers by offering: shorter duration (25 contact hours); flexible timing (one week to once a week over many weeks); open access/large group; and proximal location (on-campus). MI mentors participate in week-long summer workshops and ongoing monthly community of practice with the goal of co-constructing a shared vision, engaging in conversations about pedagogy and learning, and sustaining the MI program going forward. Approach (e.g., objectives/specific aims, research methodologies, and analysis) Research Question and Methodology: We want to know: How does participation in a micro-internship affect students’ interest and confidence to pursue STEM? We used a mixed-methods design triangulating quantitative Likert-style survey data with interpretive coding of open-responses to reveal themes in students’ motivations, attitudes toward STEM, and confidence. Participants: The study sampled students enrolled either part-time or full-time at the community college. Although each MI was classified within STEM, they were open to any interested student in any major. Demographically, participants self-identified as 70% Hispanic/Latinx, 13% Mixed-Race, and 42 female. Instrument: Student surveys were developed from two previously validated instruments that examine the impact of the MI intervention on student interest in STEM careers and pursuing internships/REUs. Also, the pre- and post (every e months to assess longitudinal outcomes) -surveys included relevant open response prompts. The surveys collected students’ demographics; interest, confidence, and motivation in pursuing a career in STEM; perceived obstacles; and past experiences with internships and MIs. 171 students responded to the pre-survey at the time of submission. Outcomes (e.g., preliminary findings, accomplishments to date) Because we just finished year 1, we lack at this time longitudinal data to reveal if student confidence is maintained over time and whether or not students are more likely to (i) enroll in more internships, (ii) transfer to a four-year university, or (iii) shorten the time it takes for degree attainment. For short term outcomes, students significantly Increased their confidence to continue pursuing opportunities to develop within the STEM pipeline, including full-length internships, completing STEM degrees, and applying for jobs in STEM. For example, using a 2-tailed t-test we compared means before and after the MI experience. 15 out of 16 questions that showed improvement in scores were related to student confidence to pursue STEM or perceived enjoyment of a STEM career. Finding from the free-response questions, showed that the majority of students reported enrolling in the MI to gain knowledge and experience. After the MI, 66% of students reported having gained valuable knowledge and experience, and 35% of students spoke about gaining confidence and/or momentum to pursue STEM as a career. Broader Impacts (e.g., the participation of underrepresented minorities in STEM; development of a diverse STEM workforce, enhanced infrastructure for research and education) The ESTEEM project has the potential for a transformational impact on STEM undergraduate education’s access and success for underrepresented and Latinx community college students, as well as for STEM capacity building at Hartnell College, a CCC and HSI, for students, faculty, professionals, and processes that foster research in STEM and education. Through sharing and transfer abilities of the ESTEEM model to similar institutions, the project has the potential to change the way students are served at an early and critical stage of their higher education experience at CCC, where one in every five community college student in the nation attends a CCC, over 67% of CCC students identify themselves with ethnic backgrounds that are not White, and 40 to 50% of University of California and California State University graduates in STEM started at a CCC, thus making it a key leverage point for recruiting and retaining a more diverse STEM workforce. 
    more » « less
  3. Student engagement, especially among Engineering and Computer science majors (E/CS), has been a priority for researchers. Although considerable efforts have been made to improve college students' engagement and interest, underrepresented minority groups and first-generation students are still at risk of dropping out of engineering majors due to lack of inclusiveness, motivation, and other related factors. According to Kuh (2008), student participation in High-Impact Educational Practices (HIEP) is correlated with student outcomes such as persistence, performance, achievement, and intent to complete their current major. The present study reviews the existing National Survey of Student Engagement (NSSE, 2012, 2017) data from two western land-grant universities to fully capture participation through the survey of first-year students and seniors (N = 674). The HIEP considered include service-learning, learning communities, research with faculty, internship or field experience, study abroad, and culminating senior experience. These practices are designed to encourage meaningful interactions between faculty and students, foster collaboration with students within different demographics groups, and facilitate learning outside the classroom. Insights were gleaned from how the students interacted with HIEP based on special characteristics such as sex, race, age, enrollment status, and residence. The purpose of the present study is to examine the extent to which E/CS students participate in HIEP and its effects on student outcomes. This study also offers comparisons or possible relationships between student demographics, student success, and HIEP involvement. For example, the participation rates of HIEP on different engineering and computer science majors, including civil, chemical, electrical, mechanical, and materials engineering, etc., are analyzed to examine the practices that work for a particular E/CS major. The present study reports findings from NSSE 2012 and 2017 surveys. Results show that among the E/CS seniors, service-learning, learning community, and study abroad program are the HIEP with the lowest participation rate with 41% (service-learning), 59% (learning community), and 68% (study abroad program), indicating that they do not plan to engage in these practices in their senior year. Conversely, internships and culminating senior experiences had the most participation among E/CS seniors with 52% (internships) and 68% (culminating senior experiences. Interestingly, first-year students showed a significant interest to participate in the following HIEP: internships, study abroad programs, and culminating senior experiences – with 76% (internships), 47% (study abroad program), and 68% (culminating senior experiences) indicating plans to engage in these practices. Finally, findings show that participation or engagement in HIEP is a significant predictor of student learning outcomes. Findings of this review may serve as a guide for future research in E/CS student participation in HIEP. The paper concludes with theoretical and practical implications of the findings on student engagement and learning. Key words: NSSE, high impact educational practices, Engagement 
    more » « less
  4. This paper presents the initial work of a recently funded NSF project on ethical and responsible research and practices in science and engineering. The objective of this research is to improve instructor training, interventions, and student outcomes in high schools and universities to improve awareness and commitment to ethical practices in STEM coursework. The project will generate a robust snapshot of the ethical knowledge, reasoning skills, attitudes, and practices of several thousand undergraduate engineering students. This snapshot will inform the development of a three-week enrichment opportunity for high school STEM teachers. Working with university faculty and graduate students, these teachers will develop learning modules on ethical issues related to their courses. The snapshot will also identify gaps and guide the creation of targeted interventions that will be used in second-, third-, and fourth-year engineering courses. This data-driven project uses a mixed-methods approach to generate a better understanding of the impact of ethics interventions at various points in a student's academic development by developing and using a set of instruments to measure cognitive, affective, and behavioral aspects of ethical competency and self-efficacy. To that end, a second snapshot will be taken by testing and surveying engineering students in their capstone courses to provide a broad overview of the competence and self-confidence that engineering students have in dealing with ethical STEM issues, to determine the efficacy of various interventions, and to improve future interventions. Utilizing repeated measures and possessing a longitudinal dimension, the project will generate extensive data about the development of ethical competency, ethical self-efficacy, and their relationship. The interventions designed for secondary and tertiary classrooms will build on best practices for micro-insertion of ethics content that are practical and help students understand how technical competencies fit within broader social, economic, and environmental contexts. The capstone snapshot will also provide some measure of the impact of other experiences (e.g., undergraduate research, internships, service learning) and courses (e.g., humanities, social science, and business courses) on development of ethical practices. This report marks the start of a five-year project; therefore, the results presented in this paper represent findings from the engineering ethics literature and baseline results from survey of engineering freshmen at Texas A&M University. The findings from the survey are being utilized in developing intervention modules that will be integrated in upper-level engineering courses and training materials for high school teachers. 
    more » « less
  5. The science, technology, engineering and mathematics (STEM) workforce contributes to the U.S. economy by supporting 67% of jobs and 69% of the gross domestic product [1]. Currently, there is an increased demand for engineering and computer science (E/CS) professionals, particularly those from underrepresented (e.g., gender, racial, ethnic) and underserved (socio-economic, geographically isolated) groups who bring diversity of thought and experience to the national E/CS workforce [2]. Correspondingly, educational institutions are called upon to develop capabilities to attract, engage, and retain students from these diverse backgrounds in E/CS programs of study. To encourage and enable diverse students to opt into and persist within E/CS programs of study, there is a critical need to engage students in supportive and enriching opportunities from which to learn and grow. The importance of student engagement for promoting student growth and development has been researched to such an extent that its utility is widely agreed upon [5]. Importantly, it has been shown that both academic and extracurricular aspects of a student’s learning processes are characterized by engagement [6]. High Impact Educational Practices (HIP) provide useful opportunities for deep student engagement and, thus, positively influence student retention and persistence [4]. Kuh [3] identified eleven curricular and extracurricular HIP (i.e., collaborative assignments and projects, common intellectual experiences, eportfolios, first year seminars and experiences, global learning and study abroad, internships, learning communities, senior culminating experiences, service and community-based learning, undergraduate research, and writing intensive courses). In computer science and engineering education fields, however, the extent to which HIP affects persistence and retention has not been fully investigated. This project aims to examine E/CS undergraduate student engagement in HIP and to understand the factors that contribute to positive engagement experiences. 
    more » « less