skip to main content


Title: Combined noninvasive metabolic and spindle imaging as potential tools for embryo and oocyte assessment
Abstract STUDY QUESTION

Is the combined use of fluorescence lifetime imaging microscopy (FLIM)-based metabolic imaging and second harmonic generation (SHG) spindle imaging a feasible and safe approach for noninvasive embryo assessment?

SUMMARY ANSWER

Metabolic imaging can sensitively detect meaningful metabolic changes in embryos, SHG produces high-quality images of spindles and the methods do not significantly impair embryo viability.

WHAT IS KNOWN ALREADY

Proper metabolism is essential for embryo viability. Metabolic imaging is a well-tested method for measuring metabolism of cells and tissues, but it is unclear if it is sensitive enough and safe enough for use in embryo assessment.

STUDY DESIGN, SIZE, DURATION

This study consisted of time-course experiments and control versus treatment experiments. We monitored the metabolism of 25 mouse oocytes with a noninvasive metabolic imaging system while exposing them to oxamate (cytoplasmic lactate dehydrogenase inhibitor) and rotenone (mitochondrial oxidative phosphorylation inhibitor) in series. Mouse embryos (n = 39) were measured every 2 h from the one-cell stage to blastocyst in order to characterize metabolic changes occurring during pre-implantation development. To assess the safety of FLIM illumination, n = 144 illuminated embryos were implanted into n = 12 mice, and n = 108 nonilluminated embryos were implanted into n = 9 mice.

PARTICIPANTS/MATERIALS, SETTING, METHODS

Experiments were performed in mouse embryos and oocytes. Samples were monitored with noninvasive, FLIM-based metabolic imaging of nicotinamide adenine dinucleotide (NADH) and flavin adenine dinucleotide (FAD) autofluorescence. Between NADH cytoplasm, NADH mitochondria and FAD mitochondria, a single metabolic measurement produces up to 12 quantitative parameters for characterizing the metabolic state of an embryo. For safety experiments, live birth rates and pup weights (mean ± SEM) were used as endpoints. For all test conditions, the level of significance was set at P < 0.05.

MAIN RESULTS AND THE ROLE OF CHANCE

Measured FLIM parameters were highly sensitive to metabolic changes due to both metabolic perturbations and embryo development. For oocytes, metabolic parameter values were compared before and after exposure to oxamate and rotenone. The metabolic measurements provided a basis for complete separation of the data sets. For embryos, metabolic parameter values were compared between the first division and morula stages, morula and blastocyst and first division and blastocyst. The metabolic measurements again completely separated the data sets. Exposure of embryos to excessive illumination dosages (24 measurements) had no significant effect on live birth rate (5.1 ± 0.94 pups/mouse for illuminated group; 5.7 ± 1.74 pups/mouse for control group) or pup weights (1.88 ± 0.10 g for illuminated group; 1.89 ± 0.11 g for control group).

LIMITATIONS, REASONS FOR CAUTION

The study was performed using a mouse model, so conclusions concerning sensitivity and safety may not generalize to human embryos. A limitation of the live birth data is also that although cages were routinely monitored, we could not preclude that some runt pups may have been eaten.

WIDER IMPLICATIONS OF THE FINDINGS

Promising proof-of-concept results demonstrate that FLIM with SHG provide detailed biological information that may be valuable for the assessment of embryo and oocyte quality. Live birth experiments support the method’s safety, arguing for further studies of the clinical utility of these techniques.

STUDY FUNDING/COMPETING INTEREST(S)

Supported by the Blavatnik Biomedical Accelerator Grant at Harvard University and by the Harvard Catalyst/The Harvard Clinical and Translational Science Center (National Institutes of Health Award UL1 TR001102), by NSF grants DMR-0820484 and PFI-TT-1827309 and by NIH grant R01HD092550-01. T.S. was supported by a National Science Foundation Postdoctoral Research Fellowship in Biology grant (1308878). S.F. and S.A. were supported by NSF MRSEC DMR-1420382. Becker and Hickl GmbH sponsored the research with the loaning of equipment for FLIM. T.S. and D.N. are cofounders and shareholders of LuminOva, Inc., and co-hold patents (US20150346100A1 and US20170039415A1) for metabolic imaging methods. D.S. is on the scientific advisory board for Cooper Surgical and has stock options with LuminOva, Inc.

 
more » « less
NSF-PAR ID:
10126640
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Human Reproduction
Volume:
34
Issue:
12
ISSN:
0268-1161
Page Range / eLocation ID:
p. 2349-2361
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    A major challenge in ART is to select high-quality oocytes and embryos. The metabolism of oocytes and embryos has long been linked to their viability, suggesting the potential utility of metabolic measurements to aid in selection. Here, we review recent work on noninvasive metabolic imaging of cumulus cells, oocytes, and embryos. We focus our discussion on fluorescence lifetime imaging microscopy (FLIM) of the autofluorescent coenzymes NAD(P)H and flavine adenine dinucleotide (FAD+), which play central roles in many metabolic pathways. FLIM measurements provide quantitative information on NAD(P)H and FAD+ concentrations and engagement with enzymes, leading to a robust means of characterizing the metabolic state of cells. We argue that FLIM is a promising approach to aid in oocyte and embryo selection.

     
    more » « less
  2. Abstract

    Topical steroids are known for their anti‐inflammatory properties and are commonly prescribed to treat many adverse skin conditions such as eczema and psoriasis. While these treatments are known to be effective, adverse effects including skin atrophy are common. In this study, the progression of these effects is investigated in anin vivomouse model using multimodal optical microscopy. Utilizing a system capable of performing two‐photon excitation fluorescence microscopy (TPEF) of reduced nicotinamide adenine dinucleotide (NADH) to visualize the epidermal cell layers and second harmonic generation (SHG) microscopy to identify collagen in the dermis, these processes can be studied at the cellular level. Fluorescence lifetime imaging microscopy (FLIM) is also utilized to image intracellularNADHlevels to obtain molecular information regarding metabolic activity following steroid treatment. In this study, fluticasone propionate (FP)‐treated, mometasone furoate (MF)‐treated and untreated animals were imaged longitudinally using a custom‐built multimodal optical microscope. Prolonged steroid treatment over the course of 21 days is shown to result in a significant increase in mean fluorescence lifetime ofNADH, suggesting a faster rate of maturation of epidermal keratinocytes. Alterations to collagen organization and the structural microenvironment are also observed. These results give insight into the structural and biochemical processes of skin atrophy associated with prolonged steroid treatment.

     
    more » « less
  3. null (Ed.)
    Abstract We demonstrate that structured illumination microscopy has the potential to enhance fluorescence lifetime imaging microscopy (FLIM) as an early detection method for oral squamous cell carcinoma. FLIM can be used to monitor or detect changes in the fluorescence lifetime of metabolic cofactors (e.g. NADH and FAD) associated with the onset of carcinogenesis. However, out of focus fluorescence often interferes with this lifetime measurement. Structured illumination fluorescence lifetime imaging (SI-FLIM) addresses this by providing depth-resolved lifetime measurements, and applied to oral mucosa, can localize the collected signal to the epithelium. In this study, the hamster model of oral carcinogenesis was used to evaluate SI-FLIM in premalignant and malignant oral mucosa. Cheek pouches were imaged in vivo and correlated to histopathological diagnoses. The potential of NADH fluorescence signal and lifetime, as measured by widefield FLIM and SI-FLIM, to differentiate dysplasia (pre-malignancy) from normal tissue was evaluated. ROC analysis was carried out with the task of discriminating between normal tissue and mild dysplasia, when changes in fluorescence characteristics are localized to the epithelium only. The results demonstrate that SI-FLIM (AUC = 0.83) is a significantly better (p-value = 0.031) marker for mild dysplasia when compared to widefield FLIM (AUC = 0.63). 
    more » « less
  4. Assisted reproductive technologies seek to improve the success rate of pregnancies. Morphology scoring is a common approach to evaluate oocyte and embryo viability prior to embryo transferin utero, but the efficacy of the method is low. We apply biodynamic imaging, based on dynamic light scattering and low-coherence digital holography, to assess the metabolic activity of oocytes and embryos. A biodynamic microscope, developed to image small and translucent biological specimens, is inserted into the bay of a commercial inverted microscope that can switch between conventional microscopy channels and biodynamic microscopy. We find intracellular Doppler spectral features that act as noninvasive proxies for embryo metabolic activity that may relate to embryo viability.

     
    more » « less
  5. Abstract

    Cancer cells are mechanically sensitive to physical properties of the microenvironment, which can affect downstream signaling to promote malignancy, in part through the modulation of metabolic pathways. Fluorescence Lifetime Imaging Microscopy (FLIM) can be used to measure the fluorescence lifetime of endogenous fluorophores, such as the metabolic co-factors NAD(P)H and FAD, in live samples. We used multiphoton FLIM to investigate the changes in cellular metabolism of 3D breast spheroids derived from MCF-10A and MD-MB-231 cell lines embedded in collagen with varying densities (1 vs. 4 mg/ml) over time (Day 0 vs. Day 3). MCF-10A spheroids demonstrated spatial gradients, with the cells closest to the spheroid edge exhibiting FLIM changes consistent with a shift towards oxidative phosphorylation (OXPHOS) while the spheroid core had changes consistent with a shift towards glycolysis. The MDA-MB-231 spheroids had a large shift consistent with increased OXPHOS with a more pronounced change at the higher collagen concentration. The MDA-MB-231 spheroids invaded into the collagen gel over time and cells that traveled the farthest had the largest changes consistent with a shift towards OXPHOS. Overall, these results suggest that the cells in contact with the extracellular matrix (ECM) and those that migrated the farthest had changes consistent with a metabolic shift towards OXPHOS. More generally, these results demonstrate the ability of multiphoton FLIM to characterize how spheroids metabolism and spatial metabolic gradients are modified by physical properties of the 3D ECM.

     
    more » « less