We prove a new generalization of the higher-order Cheeger inequality for partitioning with buffers. Consider a graph G=(V,E). The buffered expansion of a set S⊆V with a buffer B⊆V∖S is the edge expansion of S after removing all the edges from set S to its buffer B. An ε-buffered k-partitioning is a partitioning of a graph into disjoint components Pi and buffers Bi, in which the size of buffer Bi for Pi is small relative to the size of Pi: |Bi|≤ε|Pi|. The buffered expansion of a buffered partition is the maximum of buffered expansions of the k sets Pi with buffers Bi. Let hk,εG be the buffered expansion of the optimal ε-buffered k-partitioning, then for every δ>0, hk,εG≤Oδ(1)⋅(logkε)⋅λ⌊(1+δ)k⌋, where λ⌊(1+δ)k⌋ is the ⌊(1+δ)k⌋-th smallest eigenvalue of the normalized Laplacian of G. Our inequality is constructive and avoids the ``square-root loss'' that is present in the standard Cheeger inequalities (even for k=2). We also provide a complementary lower bound, and a novel generalization to the setting with arbitrary vertex weights and edge costs. Moreover our result implies and generalizes the standard higher-order Cheeger inequalities and another recent Cheeger-type inequality by Kwok, Lau, and Lee (2017) involving robust vertex expansion.
more »
« less
Volume Growth, Curvature, and Buser-Type Inequalities in Graphs
Abstract We study the volume growth of metric balls as a function of the radius in discrete spaces and focus on the relationship between volume growth and discrete curvature. We improve volume growth bounds under a lower bound on the so-called Ollivier curvature and discuss similar results under other types of discrete Ricci curvature. Following recent work in the continuous setting of Riemannian manifolds (by the 1st author), we then bound the eigenvalues of the Laplacian of a graph under bounds on the volume growth. In particular, $$\lambda _2$$ of the graph can be bounded using a weighted discrete Hardy inequality and the higher eigenvalues of the graph can be bounded by the eigenvalues of a tridiagonal matrix times a multiplicative factor, both of which only depend on the volume growth of the graph. As a direct application, we relate the eigenvalues to the Cheeger isoperimetric constant. Using these methods, we describe classes of graphs for which the Cheeger inequality is tight on the 2nd eigenvalue (i.e. the 1st nonzero eigenvalue). We also describe a method for proving Buser’s Inequality in graphs, particularly under a lower bound assumption on curvature.
more »
« less
- Award ID(s):
- 1811935
- PAR ID:
- 10126866
- Publisher / Repository:
- Oxford University Press
- Date Published:
- Journal Name:
- International Mathematics Research Notices
- ISSN:
- 1073-7928
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)We consider the problem of finding lower bounds on the I/O complexity of arbitrary computations in a two level memory hierarchy. Executions of complex computations can be formalized as an evaluation order over the underlying computation graph. However, prior methods for finding I/O lower bounds leverage the graph structures for specific problems (e.g matrix multiplication) which cannot be applied to arbitrary graphs. In this paper, we first present a novel method to bound the I/O of any computation graph using the first few eigenvalues of the graph’s Laplacian. We further extend this bound to the parallel setting. This spectral bound is not only efficiently computable by power iteration, but can also be computed in closed form for graphs with known spectra. We apply our spectral method to compute closed-form analytical bounds on two computation graphs (the Bellman-Held-Karp algorithm for the traveling salesman problem and the Fast Fourier Transform), as well as provide a probabilistic bound for random Erdős Rényi graphs. We empirically validate our bound on four computation graphs, and find that our method provides tighter bounds than current empirical methods and behaves similarly to previously published I/O bounds.more » « less
-
We prove a new generalization of the higher-order Cheeger inequality for partitioning with buffers. Consider a graph G = (V, E). The buffered expansion of a set S ⊆ V with a buffer B ⊆ V∖S is the edge expansion of S after removing all the edges from set S to its buffer B. An ε-buffered k-partitioning is a partitioning of a graph into disjoint components P_i and buffers B_i, in which the size of buffer B_i for P_i is small relative to the size of P_i: |B_i| ≤ ε|P_i|. The buffered expansion of a buffered partition is the maximum of buffered expansions of the k sets P_i with buffers B_i. Let h^{k,ε}_G be the buffered expansion of the optimal ε-buffered k-partitioning, then for every δ>0, h^{k,ε}_G ≤ O(1)⋅(log k) ⋅λ_{⌊(1+δ)k⌋} / ε, where λ_{⌊(1+δ)k⌋} is the ⌊(1+δ)k⌋-th smallest eigenvalue of the normalized Laplacian of G. Our inequality is constructive and avoids the ``square-root loss'' that is present in the standard Cheeger inequalities (even for k=2). We also provide a complementary lower bound, and a novel generalization to the setting with arbitrary vertex weights and edge costs. Moreover our result implies and generalizes the standard higher-order Cheeger inequalities and another recent Cheeger-type inequality by Kwok, Lau, and Lee (2017) involving robust vertex expansion.more » « less
-
Let $$G$$ be a finite group acting transitively on $$[n]=\{1,2,\ldots,n\}$$, and let $$\Gamma=\mathrm{Cay}(G,T)$$ be a Cayley graph of $$G$$. The graph $$\Gamma$$ is called normal if $$T$$ is closed under conjugation. In this paper, we obtain an upper bound for the second (largest) eigenvalue of the adjacency matrix of the graph $$\Gamma$$ in terms of the second eigenvalues of certain subgraphs of $$\Gamma$$. Using this result, we develop a recursive method to determine the second eigenvalues of certain Cayley graphs of $$S_n$$, and we determine the second eigenvalues of a majority of the connected normal Cayley graphs (and some of their subgraphs) of $$S_n$$ with $$\max_{\tau\in T}|\mathrm{supp}(\tau)|\leqslant 5$$, where $$\mathrm{supp}(\tau)$$ is the set of points in $[n]$ non-fixed by $$\tau$$.more » « less
-
Let $$\Gamma$$ be a finite group acting transitively on $$[n]=\{1,2,\ldots,n\}$$, and let $$G=\mathrm{Cay}(\Gamma,T)$$ be a Cayley graph of $$\Gamma$$. The graph $$G$$ is called normal if $$T$$ is closed under conjugation. In this paper, we obtain an upper bound for \textcolor[rgb]{0,0,1}{the second (largest) eigenvalue} of the adjacency matrix of the graph $$G$$ in terms of the second eigenvalues of certain subgraphs of $$G$$ (see Theorem 2.6). Using this result, we develop a recursive method to determine the second eigenvalues of certain Cayley graphs of $$S_n$$ and we determine the second eigenvalues of a majority of the connected normal Cayley graphs (and some of their subgraphs) of $$S_n$$ with $$\max_{\tau\in T}|\mathrm{supp}(\tau)|\leq 5$$, where $$\mathrm{supp}(\tau)$$ is the set of points in $[n]$ non-fixed by $$\tau$$.more » « less