skip to main content


Title: Improving Multisensor Precipitation Estimation via Adaptive Conditional Bias–Penalized Merging of Rain Gauge Data and Remotely Sensed Quantitative Precipitation Estimates
Abstract

We describe and evaluate adaptive conditional bias–penalized cokriging (CBPCK) for improved multisensor precipitation estimation using rain gauge data and remotely sensed quantitative precipitation estimates (QPE). The remotely sensed QPEs used are radar-only and radar–satellite-fused estimates. For comparative evaluation, true validation is carried out over the continental United States (CONUS) for 13–30 September 2015 and 7–9 October 2016. The hourly gauge data, radar-only QPE, and satellite QPE used are from the Hydrometeorological Automated Data System, Multi-Radar Multi-Sensor System, and Self-Calibrating Multivariate Precipitation Retrieval (SCaMPR), respectively. For radar–satellite fusion, conditional bias–penalized Fisher estimation is used. The reference merging technique compared is ordinary cokriging (OCK) used in the National Weather Service Multisensor Precipitation Estimator. It is shown that, beyond the reduction due to mean field bias (MFB) correction, both OCK and adaptive CBPCK additionally reduce the unconditional root-mean-square error (RMSE) of radar-only QPE by 9%–16% over the CONUS for the two periods, and that adaptive CBPCK is superior to OCK for estimation of hourly amounts exceeding 1 mm. When fused with the MFB-corrected radar QPE, the MFB-corrected SCaMPR QPE for September 2015 reduces the unconditional RMSE of the MFB-corrected radar by 4% and 6% over the entire and western half of the CONUS, respectively, but is inferior to the MFB-corrected radar for estimation of hourly amounts exceeding 7 mm. Adaptive CBPCK should hence be favored over OCK for estimation of significant amounts of precipitation despite larger computational cost, and the SCaMPR QPE should be used selectively in multisensor QPE.

 
more » « less
NSF-PAR ID:
10126897
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
American Meteorological Society
Date Published:
Journal Name:
Journal of Hydrometeorology
Volume:
20
Issue:
12
ISSN:
1525-755X
Page Range / eLocation ID:
p. 2347-2365
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Accurate and timely precipitation estimates are critical for monitoring and forecasting natural disasters such as floods. Despite having high-resolution satellite information, precipitation estimation from remotely sensed data still suffers from methodological limitations. State-of-the-art deep learning algorithms, renowned for their skill in learning accurate patterns within large and complex datasets, appear well suited to the task of precipitation estimation, given the ample amount of high-resolution satellite data. In this study, the effectiveness of applying convolutional neural networks (CNNs) together with the infrared (IR) and water vapor (WV) channels from geostationary satellites for estimating precipitation rate is explored. The proposed model performances are evaluated during summer 2012 and 2013 over central CONUS at the spatial resolution of 0.08° and at an hourly time scale. Precipitation Estimation from Remotely Sensed Information Using Artificial Neural Networks (PERSIANN)–Cloud Classification System (CCS), which is an operational satellite-based product, and PERSIANN–Stacked Denoising Autoencoder (PERSIANN-SDAE) are employed as baseline models. Results demonstrate that the proposed model (PERSIANN-CNN) provides more accurate rainfall estimates compared to the baseline models at various temporal and spatial scales. Specifically, PERSIANN-CNN outperforms PERSIANN-CCS (and PERSIANN-SDAE) by 54% (and 23%) in the critical success index (CSI), demonstrating the detection skills of the model. Furthermore, the root-mean-square error (RMSE) of the rainfall estimates with respect to the National Centers for Environmental Prediction (NCEP) Stage IV gauge–radar data, for PERSIANN-CNN was lower than that of PERSIANN-CCS (PERSIANN-SDAE) by 37% (14%), showing the estimation accuracy of the proposed model.

     
    more » « less
  2. Accurate estimation of surface precipitation with high spatial and temporal resolution is critical for decision making regarding severe weather and water resources management. Polarimetric weather radar is the main operational instrument used for quantitative precipitation estimation (QPE). However, conventional parametric radar QPE algorithms such as the radar reflectivity (Z) and rain rate (R) relations cannot fully represent clouds and precipitation dynamics due to their dependency on local raindrop size distributions and the inherent parameterization errors. This article develops four deep learning (DL) models for polarimetric radar QPE (i.e., RQPENetD1, RQPENetD2, RQPENetV, RQPENetR) using different core building blocks. In particular, multi-dimensional polarimetric radar observations are utilized as input and surface gauge measurements are used as training labels. The feasibility and performance of these DL models are demonstrated and quantified using U.S. Weather Surveillance Radar - 1988 Doppler (WSR-88D) observations near Melbourne, Florida. The experimental results show that the dense blocks-based models (i.e., RQPENetD1 and RQPENetD2) have better performance than residual blocks, RepVGG blocks-based models (i.e., RQPENetR and RQPENetV) and five traditional Z-R relations. RQPENetD1 has the best quantitative performance scores, with a mean absolute error (MAE) of 1.58 mm, root mean squared error (RMSE) of 2.68 mm, normalized standard error (NSE) of 26%, and correlation of 0.92 for hourly rainfall estimates using independent rain gauge data as references. These results suggest that deep learning performs well in mapping the connection between polarimetric radar observations aloft and surface rainfall. 
    more » « less
  3. Abstract Precipitation measurements with high spatiotemporal resolution are a vital input for hydrometeorological and water resources studies; decision-making in disaster management; and weather, climate, and hydrological forecasting. Moreover, real-time precipitation estimation with high precision is pivotal for the monitoring and managing of catastrophic hydroclimate disasters such as flash floods, which frequently transpire after extreme rainfall. While algorithms that exclusively use satellite infrared data as input are attractive owing to their rich spatiotemporal resolution and near-instantaneous availability, their sole reliance on cloud-top brightness temperature (Tb) readings causes underestimates in wet regions and overestimates in dry regions—this is especially evident over the western contiguous United States (CONUS). We introduce an algorithm, the Precipitation Estimations from Remotely Sensed Information Using Artificial Neural Networks (PERSIANN) Dynamic Infrared–Rain rate model (PDIR), which utilizes climatological data to construct a dynamic (i.e., laterally shifting) Tb–rain rate relationship that has several notable advantages over other quantitative precipitation-estimation algorithms and noteworthy skill over the western CONUS. Validation of PDIR over the western CONUS shows a promising degree of skill, notably at the annual scale, where it performs well in comparison to other satellite-based products. Analysis of two extreme landfalling atmospheric rivers show that solely IR-based PDIR performs reasonably well compared to other IR- and PMW-based satellite rainfall products, marking its potential to be effective in real-time monitoring of extreme storms. This research suggests that IR-based algorithms that contain the spatiotemporal richness and near-instantaneous availability needed for rapid natural hazards response may soon contain the skill needed for hydrologic and water resource applications. 
    more » « less
  4. Real-time and accurate precipitation estimation is critical for environmental protection and water resources management. Compared to traditional methods, i.e., radar reflectivity (Z) and rainfall rate (R) relations, relying on local raindrop size distributions, the deep learning model can fit the functional relationship between radar observations and rainfall rate measurements. However, the black-box nature of deep learning models makes it difficult to explain the physical mechanisms behind their results. To address this problem, this study proposes DQPENet, a deep learning model for polarimetric radar QPE utilizing dense blocks. We employ a permutation test to understand the relative importance of different radar data input variables. Additionally, we propose a regression importance value (RIV) method for the precipitation estimation task to visualize feature importance regions. Our experimental results show that radar reflectivity and specific differential phase at the lowest elevation angle are the two most important observables for the model’s precipitation estimation. Furthermore, we find that radar data closer to the rain gauge are more influential on the model’s results, indicating that the deep learning model is able to capture the underlying physical mechanism of atmospheric data. 
    more » « less
  5. Abstract

    Machine learning‐based approaches demonstrate a significant potential in radar quantitative precipitation estimation (QPE) applications. In contrast to conventional methods that depend on local raindrop size distributions, deep learning (DL) can establish an effective mapping from three‐dimensional radar observations to ground rain rates. However, the lack of transparency in DL models poses challenges toward understanding the underlying physical mechanisms that drive their outcomes. This study aims to develop a DL‐based QPE system and provide a physical explanation of radar precipitation estimation process. This research is designed by employing a deep neural network consisting of two modules. The first module is a quantitative precipitation estimation network that has the capability to learn precipitation patterns and spatial distribution from multidimensional polarimetric radar observations. The second module introduces a quantitative precipitation estimation shapley additive explanations method to quantify the influence of each radar observable on the model estimate across various precipitation intensities.

     
    more » « less