The mating of budding yeast depends on chemotropism, a fundamental cellular process. Haploid yeast cells of opposite mating type signal their positions to one another through mating pheromones. We have proposed a deterministic gradient sensing model that explains how these cells orient toward their mating partners. Using the cell-cycle determined default polarity site (DS), cells assemble a gradient tracking machine (GTM) composed of signaling, polarity, and trafficking proteins. After assembly, the GTM redistributes up the gradient, aligns with the pheromone source, and triggers polarized growth toward the partner. Since positive feedback mechanisms drive polarized growth at the DS, it is unclear how the GTM is released for tracking. What prevents the GTM from triggering polarized growth at the DS? Here, we describe two mechanisms that are essential for tracking: inactivation of the Ras GTPase Bud1 and positioning of actin-independent vesicle delivery upgradient.
more »
« less
Mating yeast cells use an intrinsic polarity site to assemble a pheromone-gradient tracking machine
The mating of budding yeast depends on chemotropism, a fundamental cellular process. The two yeast mating types secrete peptide pheromones that bind to GPCRs on cells of the opposite type. Cells find and contact a partner by determining the direction of the pheromone source and polarizing their growth toward it. Actin-directed secretion to the chemotropic growth site (CS) generates a mating projection. When pheromone-stimulated cells are unable to sense a gradient, they form mating projections where they would have budded in the next cell cycle, at a position called the default polarity site (DS). Numerous models have been proposed to explain yeast gradient sensing, but none address how cells reliably switch from the intrinsically determined DS to the gradient-aligned CS, despite a weak spatial signal. Here we demonstrate that, in mating cells, the initially uniform receptor and G protein first polarize to the DS, then redistribute along the plasma membrane until they reach the CS. Our data indicate that signaling, polarity, and trafficking proteins localize to the DS during assembly of what we call the gradient tracking machine (GTM). Differential activation of the receptor triggers feedback mechanisms that bias exocytosis upgradient and endocytosis downgradient, thus enabling redistribution of the GTM toward the pheromone source. The GTM stabilizes when the receptor peak centers at the CS and the endocytic machinery surrounds it. A computational model simulates GTM tracking and stabilization and correctly predicts that its assembly at a single site contributes to mating fidelity.
more »
« less
- Award ID(s):
- 1818067
- PAR ID:
- 10126933
- Publisher / Repository:
- DOI PREFIX: 10.1083
- Date Published:
- Journal Name:
- Journal of Cell Biology
- Volume:
- 218
- Issue:
- 11
- ISSN:
- 0021-9525
- Page Range / eLocation ID:
- p. 3730-3752
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Budding yeast cells interpret shallow pheromone gradients from cells of the opposite mating type, polarize their growth toward the pheromone source, and fuse at the chemotropic growth site. We previously proposed a deterministic, gradient-sensing model that explains how yeast cells switch from the intrinsically positioned default polarity site (DS) to the gradient-aligned chemotropic site (CS) at the plasma membrane. Because phosphorylation of the mating-specific Gβ subunit is thought to be important for this process, we developed a biosensor that bound to phosphorylated but not unphosphorylated Gβ and monitored its spatiotemporal dynamics to test key predictions of our gradient-sensing model. In mating cells, the biosensor colocalized with both Gβ and receptor reporters at the DS and then tracked with them to the CS. The biosensor concentrated on the leading side of the tracking Gβ and receptor peaks and was the first to arrive and stop tracking at the CS. Our data showed that the concentrated localization of phosphorylated Gβ correlated with the tracking direction and final position of the G protein and receptor, consistent with the idea that gradient-regulated phosphorylation and dephosphorylation of Gβ contributes to gradient sensing. Cells expressing a nonphosphorylatable mutant form of Gβ exhibited defects in gradient tracking, orientation toward mating partners, and mating efficiency.more » « less
-
ABSTRACT Cell polarization in response to chemical gradients is important in development and homeostasis across eukaryota. Chemosensing cells orient toward or away from gradient sources by polarizing along a front–rear axis. Using the mating response of budding yeast as a model of chemotropic cell polarization, we found that Dcv1, a member of the claudin superfamily, influences front–rear polarity. Although Dcv1 localized uniformly on the plasma membrane (PM) of vegetative cells, it was confined to the rear of cells responding to pheromone, away from the pheromone receptor. dcv1Δ conferred mislocalization of sensory, polarity and trafficking proteins, as well as PM lipids. These phenotypes correlated with defects in pheromone-gradient tracking and cell fusion. We propose that Dcv1 helps demarcate the mating-specific front domain primarily by restricting PM lipid distribution.more » « less
-
Intracellular protein gradients serve a variety of functions, such as the establishment of cell polarity or to provide positional information for gene expression in developing embryos. Given that cell size in a population can vary considerably, for the protein gradients to work properly they often have to be scaled to the size of the cell. Here, we examine a model of protein gradient formation within a cell that relies on cytoplasmic diffusion and cortical transport of proteins toward a cell pole. We show that the shape of the protein gradient is determined solely by the cell geometry. Furthermore, we show that the length scale over which the protein concentration in the gradient varies is determined by the linear dimensions of the cell, independent of the diffusion constant or the transport speed. This gradient provides scale-invariant positional information within a cell, which can be used for assembly of intracellular structures whose size is scaled to the linear dimensions of the cell, such as the cytokinetic ring and actin cables in budding yeast cells.more » « less
-
Miller, Elizabeth (Ed.)Spatial and temporal tracking of fluorescent proteins (FPs) in live cells permits visualization of proteome remodeling in response to extracellular cues. Historically, protein dynamics during trafficking have been visualized using constitutively active FPs fused to proteins of interest. While powerful, such FPs label all cellular pools of a protein, potentially masking the dynamics of select subpopulations. To help study protein subpopulations, bioconjugate tags, including the fluorogen activation proteins (FAPs), were developed. FAPs are comprised of two components: a single-chain antibody (SCA) fused to the protein of interest and a malachite-green (MG) derivative, which fluoresces only when bound to the SCA. Importantly, the MG derivatives can be either cell-permeant or -impermeant, thus permitting isolated detection of SCA-tagged proteins at the cell surface and facilitating quantitative endocytic measures. To expand FAP use in yeast, we optimized the SCA for yeast expression, created FAP-tagging plasmids, and generated FAP-tagged organelle markers. To demonstrate FAP efficacy, we coupled the SCA to the yeast G-protein coupled receptor Ste3. We measured Ste3 endocytic dynamics in response to pheromone and characterized cis- and trans-acting regulators of Ste3. Our work significantly expands FAP technology for varied applications in S. cerevisiae.more » « less
An official website of the United States government
