skip to main content

Title: Mating yeast cells use an intrinsic polarity site to assemble a pheromone-gradient tracking machine

The mating of budding yeast depends on chemotropism, a fundamental cellular process. The two yeast mating types secrete peptide pheromones that bind to GPCRs on cells of the opposite type. Cells find and contact a partner by determining the direction of the pheromone source and polarizing their growth toward it. Actin-directed secretion to the chemotropic growth site (CS) generates a mating projection. When pheromone-stimulated cells are unable to sense a gradient, they form mating projections where they would have budded in the next cell cycle, at a position called the default polarity site (DS). Numerous models have been proposed to explain yeast gradient sensing, but none address how cells reliably switch from the intrinsically determined DS to the gradient-aligned CS, despite a weak spatial signal. Here we demonstrate that, in mating cells, the initially uniform receptor and G protein first polarize to the DS, then redistribute along the plasma membrane until they reach the CS. Our data indicate that signaling, polarity, and trafficking proteins localize to the DS during assembly of what we call the gradient tracking machine (GTM). Differential activation of the receptor triggers feedback mechanisms that bias exocytosis upgradient and endocytosis downgradient, thus enabling redistribution of the GTM toward the pheromone source. The GTM stabilizes when the receptor peak centers at the CS and the endocytic machinery surrounds it. A computational model simulates GTM tracking and stabilization and correctly predicts that its assembly at a single site contributes to mating fidelity.

more » « less
Award ID(s):
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1083
Date Published:
Journal Name:
Journal of Cell Biology
Page Range / eLocation ID:
p. 3730-3752
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Budding yeast cells interpret shallow pheromone gradients from cells of the opposite mating type, polarize their growth toward the pheromone source, and fuse at the chemotropic growth site. We previously proposed a deterministic, gradient-sensing model that explains how yeast cells switch from the intrinsically positioned default polarity site (DS) to the gradient-aligned chemotropic site (CS) at the plasma membrane. Because phosphorylation of the mating-specific Gβ subunit is thought to be important for this process, we developed a biosensor that bound to phosphorylated but not unphosphorylated Gβ and monitored its spatiotemporal dynamics to test key predictions of our gradient-sensing model. In mating cells, the biosensor colocalized with both Gβ and receptor reporters at the DS and then tracked with them to the CS. The biosensor concentrated on the leading side of the tracking Gβ and receptor peaks and was the first to arrive and stop tracking at the CS. Our data showed that the concentrated localization of phosphorylated Gβ correlated with the tracking direction and final position of the G protein and receptor, consistent with the idea that gradient-regulated phosphorylation and dephosphorylation of Gβ contributes to gradient sensing. Cells expressing a nonphosphorylatable mutant form of Gβ exhibited defects in gradient tracking, orientation toward mating partners, and mating efficiency.

    more » « less
  2. The mating of budding yeast depends on chemotropism, a fundamental cellular process. Haploid yeast cells of opposite mating type signal their positions to one another through mating pheromones. We have proposed a deterministic gradient sensing model that explains how these cells orient toward their mating partners. Using the cell-cycle determined default polarity site (DS), cells assemble a gradient tracking machine (GTM) composed of signaling, polarity, and trafficking proteins. After assembly, the GTM redistributes up the gradient, aligns with the pheromone source, and triggers polarized growth toward the partner. Since positive feedback mechanisms drive polarized growth at the DS, it is unclear how the GTM is released for tracking. What prevents the GTM from triggering polarized growth at the DS? Here, we describe two mechanisms that are essential for tracking: inactivation of the Ras GTPase Bud1 and positioning of actin-independent vesicle delivery upgradient.

    more » « less
  3. ABSTRACT Cell polarization in response to chemical gradients is important in development and homeostasis across eukaryota. Chemosensing cells orient toward or away from gradient sources by polarizing along a front–rear axis. Using the mating response of budding yeast as a model of chemotropic cell polarization, we found that Dcv1, a member of the claudin superfamily, influences front–rear polarity. Although Dcv1 localized uniformly on the plasma membrane (PM) of vegetative cells, it was confined to the rear of cells responding to pheromone, away from the pheromone receptor. dcv1Δ conferred mislocalization of sensory, polarity and trafficking proteins, as well as PM lipids. These phenotypes correlated with defects in pheromone-gradient tracking and cell fusion. We propose that Dcv1 helps demarcate the mating-specific front domain primarily by restricting PM lipid distribution. 
    more » « less
  4. Abstract

    How nonspore haploidSaccharomycescells choose sites of budding and polarize towards pheromone signals in order to mate has been a subject of intense study. Unlike nonspore haploids, sibling spores produced via meiosis and sporulation by a diploid cell are physically interconnected and encased in a sac derived from the old cell wall of the diploid, called the ascus. Nonspore haploids bud adjacent to previous sites of budding, relying on stable cortical landmarks laid down during prior divisions, but because spore membranes are made de novo, it was assumed that, as is known for fission yeast,Saccharomycesspores break symmetry and polarize at random locations. Here, we show that this assumption is incorrect:Saccharomyces cerevisiaespores are born prepolarized to outgrow, prior to budding or mating, away from interspore bridges. Consequently, when spores bud within an intact ascus, their buds locally penetrate the ascus wall, and when they mate, the resulting zygotes adopt a unique morphology reflective of repolarization towards pheromone. Long‐lived cortical foci containing the septin Cdc10 mark polarity sites, but the canonical bud site selection programme is dispensable for spore polarity, thus the origin and molecular composition of these landmarks remain unknown. These findings demand further investigation of previously overlooked mechanisms of polarity establishment and local cell wall digestion and highlight how a key step in theSaccharomyceslife cycle has been historically neglected.

    more » « less
  5. null (Ed.)
    Mating-types allow single-celled eukaryotic organisms to distinguish self from non-self in preparation for sexual reproduction. The components of mating-type loci provide initial self/non-self-recognition through pheromone and receptor interactions that control early cell fusion events. However, they may also provide a second level of scrutiny that requires differences in alleles leading to production of a transcription factor required for successful downstream developmental pathways after initial cell fusion. Interestingly, the protein subunits of these transcription factors have not been thoroughly examined for their roles, if any, in the haploid cells themselves. In Ustilago maydis, the causative agent of galls in maize plants, the b locus, encoding bEast (bE) and bWest (bW), components of the eventual requisite transcription factor, has been extensively studied for its role in formation of the stable dikaryon after mating and subsequent pathogenic program. Little is known, however, about any roles for bE or bW in haploid cells. Since mating in fungi is often induced under conditions of nitrogen starvation, we have explored connections between the b locus and the nitrogen-sensing and response pathways in U. maydis. We previously identified a connection in haploid cells between the b locus and Ump2, the high-affinity transceptor, a protein that both transports ammonium and triggers filamentous growth as a response to nitrogen starvation. Deletion of the entire b locus abrogates the filamentous response to low ammonium, a phenotype that is rescued by overexpression of Ump2. Here we further investigated the individual roles of bE and bW in haploid cells. We show that bE and bW are expressed differentially in haploid cells starved for ammonium. Their respective deletion elicits different effects on transcription of mating and pathogenic-related genes and, importantly, on the degree of pathogenic development in host plants. This is the first demonstration of a role for these mating locus components on haploid development and the first to demonstrate a connection to the ammonium transceptors. 
    more » « less