skip to main content


Title: Spatiotemporal organization and protein dynamics involved in regulated exocytosis of MMP-9 in breast cancer cells

Altered regulation of exocytosis is an important mechanism controlling many diseases, including cancer. Defects in exocytosis have been implicated in many cancer cell types and are generally attributed to mutations in cellular transport, trafficking, and assembly of machinery necessary for exocytosis of secretory vesicle cargo. In these cancers, up-regulation of trafficking and secretion of matrix metalloproteinase-9 (MMP-9), a proteolytic enzyme, is responsible for degrading the extracellular matrix, a necessary step in tumor progression. Using TIRF microscopy, we identified proteins associated with secretory vesicles containing MMP-9 and imaged the local dynamics of these proteins at fusion sites during regulated exocytosis of MMP-9 from MCF-7 breast cancer cells. We found that many regulators of exocytosis, including several Rab GTPases, Rab effector proteins, and SNARE/SNARE modulator proteins, are stably assembled on docked secretory vesicles before exocytosis. At the moment of fusion, many of these components are quickly lost from the vesicle, while several endocytic proteins and lipids are simultaneously recruited to exocytic sites at precisely that moment. Our findings provide insight into the dynamic behavior of key core exocytic proteins, accessory proteins, lipids, and some endocytic proteins at single sites of secretory vesicle fusion in breast cancer cells.

 
more » « less
NSF-PAR ID:
10126947
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1085
Date Published:
Journal Name:
Journal of General Physiology
Volume:
151
Issue:
12
ISSN:
0022-1295
Page Range / eLocation ID:
p. 1386-1403
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Exocyst is an evolutionarily conserved hetero‐octameric tethering complex that plays a variety of roles in membrane trafficking, including exocytosis, endocytosis, autophagy, cell polarization, cytokinesis, pathogen invasion, and metastasis. Exocyst serves as a platform for interactions between the Rab, Rho, and Ral small GTPases, SNARE proteins, and Sec1/Munc18 regulators that coordinate spatial and temporal fidelity of membrane fusion. However, its mechanism is poorly described at the molecular level. Here, we determine the molecular architecture of the yeast exocyst complex by an integrative approach, based on a 3D density map from negative‐stain electron microscopy (EM) at ~16 Å resolution, 434 disuccinimidyl suberate and 1‐ethyl‐3‐(3‐dimethylaminopropyl)carbodiimide hydrochloride cross‐links from chemical‐crosslinking mass spectrometry, and partial atomic models of the eight subunits. The integrative structure is validated by a previously determined cryo‐EM structure, cross‐links, and distances from in vivo fluorescence microscopy. Our subunit configuration is consistent with the cryo‐EM structure, except for Sec5. While not observed in the cryo‐EM map, the integrative model localizes the N‐terminal half of Sec3 near the Sec6 subunit. Limited proteolysis experiments suggest that the conformation of Exo70 is dynamic, which may have functional implications for SNARE and membrane interactions. This study illustrates how integrative modeling based on varied low‐resolution structural data can inform biologically relevant hypotheses, even in the absence of high‐resolution data.

     
    more » « less
  2. Gupton, Stephanie (Ed.)
    Following exocytosis at active zones, synaptic vesicle membranes and membrane-bound proteins must be recycled. The endocytic machinery that drives this recycling accumulates in the periactive zone (PAZ), a region of the synapse adjacent to active zones, but the organization of this machinery within the PAZ, and how PAZ composition relates to active zone release properties, remains unknown. The PAZ is also enriched for cell adhesion proteins, but their function at these sites is poorly understood. Here, using Airyscan and stimulated emission depletion imaging of Drosophila synapses, we develop a quantitative framework describing the organization and ultrastructure of the PAZ. Different endocytic proteins localize to distinct regions of the PAZ, suggesting that subdomains are specialized for distinct biochemical activities, stages of membrane remodeling, or synaptic functions. We find that the accumulation and distribution of endocytic but not adhesion PAZ proteins correlate with the abundance of the scaffolding protein Bruchpilot at active zones—a structural correlate of release probability. These data suggest that endocytic and exocytic activities are spatially correlated. Taken together, our results identify novel relationships between the exocytic and endocytic apparatus at the synapse and provide a new conceptual framework to quantify synaptic architecture. 
    more » « less
  3. Endocytosis, secretion, and endosomal trafficking are key cellular processes that control the composition of the plasma membrane. Through the coordination of these trafficking pathways, cells can adjust the composition, localization, and turnover of proteins and lipids in response to developmental or environmental cues. Upon being incorporated into vesicles and internalized through endocytosis, plant plasma membrane proteins are delivered to the trans‐Golgi network (TGN). At the TGN, plasma membrane proteins are recycled back to the plasma membrane or transferred to multivesicular endosomes (MVEs), where they are further sorted into intralumenal vesicles for degradation in the vacuole. Both types of plant endosomes, TGN and MVEs, act as sorting organelles for multiple endocytic, recycling, and secretory pathways. Molecular assemblies such as retromer, ESCRT (endosomal sorting complex required for transport) machinery, small GTPases, adaptor proteins, and SNAREs associate with specific domains of endosomal membranes to mediate different sorting and membrane‐budding events. In this review, we discuss the mechanisms underlying the recognition and sorting of proteins at endosomes, membrane remodeling and budding, and their implications for cellular trafficking and physiological responses in plants.

     
    more » « less
  4. Summary

    The fundamental process of polarised exocytosis requires the interconnected activity of molecular motors trafficking vesicular cargo within a dynamic cytoskeletal network. In plants, few mechanistic details are known about how molecular motors, such as myosin XI, associate with their secretory cargo to support the ubiquitous processes of polarised growth and cell division.

    Live‐cell imaging coupled with targeted gene knockouts and a high‐throughput RNAi assay enabled the first characterisation of the loss of Rab‐E function. Yeast two‐hybrid and subsequentin silicostructural prediction uncovered a specific interaction between Rab‐E and myosin XI that is conserved betweenP. patensandA. thaliana.

    Rab‐E co‐localises with myosin XI at sites of active exocytosis, and at the growing tip both proteins are spatiotemporally coupled. Rab‐E is required for normal plant growth inP. patensand therab‐Eandmyosin XIphenotypes are rescued byA. thaliana’sRab‐E1c and myosin XI‐K/E, respectively. BothPpMyoXIandAtMyoXI‐Kinteract withPpRabE14, and the interaction is specifically mediated byPpMyoXIresidue V1422. This interaction is required for polarised growth.

    Our results suggest that the interaction of Rab‐E and myosin XI is a conserved feature of polarised growth in plants.

     
    more » « less
  5. ABSTRACT In eukaryotic cells, the s oluble N -ethylmaleimide- s ensitive f actor (NSF) a ttachment protein re ceptor (SNARE) proteins comprise the minimal machinery that triggers fusion of transport vesicles with their target membranes. Comparative studies revealed that genes encoding the components of the SNARE system are highly conserved in yeast, insect, and human genomes. Upon infection of insect cells by the virus Autographa californica multiple nucleopolyhedrovirus (AcMNPV), the transcript levels of most SNARE genes initially were upregulated. We found that overexpression of dominant-negative (DN) forms of NSF or knockdown of the expression of NSF, the key regulator of the SNARE system, significantly affected infectious AcMNPV production. In cells expressing DN NSF, entering virions were trapped in the cytoplasm or transported to the nucleus with low efficiency. The presence of DN NSF also moderately reduced trafficking of the viral envelope glycoprotein GP64 to the plasma membrane but dramatically inhibited production of infectious budded virions (BV). Transmission electron microscopy analysis of infections in cells expressing DN NSF revealed that progeny nucleocapsids were retained in a perinuclear space surrounded by inner and outer nuclear membranes. Several baculovirus conserved (core) proteins (Ac76, Ac78, GP41, Ac93, and Ac103) that are important for infectious budded virion production were found to associate with NSF, and NSF was detected within the assembled BV. Together, these data indicate that the cellular SNARE system is involved in AcMNPV infection and that NSF is required for efficient entry and nuclear egress of budded virions of AcMNPV. IMPORTANCE Little is known regarding the complex interplay between cellular factors and baculoviruses during viral entry and egress. Here, we examined the cellular SNARE system, which mediates the fusion of vesicles in healthy cells, and its relation to baculovirus infection. Using a DN approach and RNA interference knockdown, we demonstrated that a general disruption of the SNARE machinery significantly inhibited the production of infectious BV of AcMNPV. The presence of a DN NSF protein resulted in low-efficiency entry of BV and the retention of progeny nucleocapsids in the perinuclear space during egress. Combined with these effects, we also found that several conserved (core) baculovirus proteins closely associate with NSF, and these results suggest their involvement in the egress of BV. Our findings are the first to demonstrate that the SNARE system is required for efficient entry of BV and nuclear egress of progeny nucleocapsids of baculoviruses. 
    more » « less