skip to main content

Title: Beyond proteases: Basement membrane mechanics and cancer invasion

In epithelial cancers, cells must invade through basement membranes (BMs) to metastasize. The BM, a thin layer of extracellular matrix underlying epithelial and endothelial tissues, is primarily composed of laminin and collagen IV and serves as a structural barrier to cancer cell invasion, intravasation, and extravasation. BM invasion has been thought to require protease degradation since cells, which are typically on the order of 10 µm in size, are too large to squeeze through the nanometer-scale pores of the BM. However, recent studies point toward a more complex picture, with physical forces generated by cancer cells facilitating protease-independent BM invasion. Moreover, collective cell interactions, proliferation, cancer-associated fibroblasts, myoepithelial cells, and immune cells are all implicated in regulating BM invasion through physical forces. A comprehensive understanding of BM structure and mechanics and diverse modes of BM invasion may yield new strategies for blocking cancer progression and metastasis.

Publication Date:
Journal Name:
The Journal of Cell Biology
Page Range or eLocation-ID:
p. 2456-2469
DOI PREFIX: 10.1083
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    This paper describes mammary organoids with a basal‐in phenotype where the basement membrane is located on the interior surface of the organoid. A key materials consideration to induce this basal‐in phenotype is the use of a minimal gel scaffold that the epithelial cells self‐assemble around and encapsulate. When MDA‐MB‐231 breast cancer cells are co‐cultured with epithelial cells from day 0 under these conditions, cells self‐organize into patterns with distinct cancer cell populations both inside and at the periphery of the epithelial organoid. In another type of experiment, the robust formation of the basement membrane on the epithelial organoid interior enables convenient studies of MDA‐MB‐231 invasion in a tumor progression‐relevant direction relative to epithelial cell‐basement membrane positioning. That is, the study of cancer invasion through the epithelium first, followed by the basement membrane to the basal side, is realized in an experimentally convenient manner where the cancer cells are simply seeded on the outside of preformed organoids, and their invasion into the organoid is monitored. Interestingly, invasion is more prominent when tumor cells are added to day 7 organoids with less developed basement membranes compared to day 16 organoids with more defined ones.

  2. Abstract

    Throughout the body, epithelial tissues contain curved features (e.g. cysts, ducts and crypts) that influence cell behaviors. These structures have varied curvature, with flat structures having zero curvature and structures such as crypts having large curvature. In the ovary, cortical inclusion cysts (CICs) of varying curvatures are found, and fallopian tube epithelial (FTE) cells have been found trapped within these cysts. FTE are the precursor for ovarian cancer, and the CIC niche has been proposed to play a role in ovarian cancer progression. We hypothesized that variations in ovarian CIC curvature that occur during cyst resolution impact the ability of trapped FTE cells to invade into the surrounding stroma. Using a lumen model in collagen gels, we determined that increased curvature resulted in more invasions of mouse FTE cells. To isolate curvature as a system parameter, we developed a novel technique to pattern concave curvatures into collagen gels. When FTE cells were seeded to confluency on curved substrates, increases in curvature increased the number of invading FTE cells and the invasion distance. FTE invasion into collagen substrates with higher curvature depended on matrix metalloproteinases (MMPs), but expression of collagen I degrading Mmps was not different on curved and flatmore »regions. A finite-element model predicted that contractility and cell–cell connections were essential for increased invasion on substrates with higher curvature, while cell–substrate interactions had minimal effect. Experiments supported these predictions, with invasion decreased by blebbistatin, ethylene glycol-bis(β-aminoethyl ether)-N,N,N’,N’-tetraacetic acid (EGTA) or N-cadherin-blocking antibody, but with no effect from a focal adhesion kinase inhibitor. Finally, experimental evidence supports that cell invasion on curved substrates occurs in two phases—a cell–cell-dependent initiation phase where individual cells break away from the monolayer and an MMP-dependent phase as cells migrate further into the collagen matrix.

    « less
  3. Abstract

    Transmembrane serine proteases have been implicated in the development and progression of solid and hematological cancers. Human airway trypsin‐like protease 4 (HAT‐L4) is a transmembrane serine protease expressed in epithelial cells and exocrine glands. In the skin, HAT‐L4 is important for normal epidermal barrier function. Here, we report an unexpected finding of ectopic HAT‐L4 expression in neutrophils and monocytes from acute myeloid leukemia (AML) patients. Such expression was not detected in bone marrow cells from normal individuals or patients with chronic myeloid leukemia, acute lymphocytic leukemia and chronic lymphocytic leukemia. In AML patients who underwent chemotherapy, persistent HAT‐L4 expression in bone marrow cells was associated with minimal residual disease and poor prognostic outcomes. In culture, silencing HAT‐L4 expression in AML–derived THP‐1 cells by short hairpin RNAs inhibited matrix metalloproteinase‐2 activation and Matrigel invasion. In mouse xenograft models, inhibition of HAT‐L4 expression reduced the proliferation and growth of THP‐1 cell–derived tumors. Our results indicate that ectopic HAT‐L4 expression is a pathological mechanism in AML and that HAT‐L4 may be used as a cell surface marker for AML blast detection and targeting.

  4. Abstract During progression from carcinoma in situ to an invasive tumor, the immune system is engaged in complex sets of interactions with various tumor cells. Tumor cell plasticity alters disease trajectories via epithelial-to-mesenchymal transition (EMT). Several of the same pathways that regulate EMT are involved in tumor-immune interactions, yet little is known about the mechanisms and consequences of crosstalk between these regulatory processes. Here we introduce a multiscale evolutionary model to describe tumor-immune-EMT interactions and their impact on epithelial cancer progression from in situ to invasive disease. Through simulation of patient cohorts in silico, the model predicts that a controllable region maximizes invasion-free survival. This controllable region depends on properties of the mesenchymal tumor cell phenotype: its growth rate and its immune-evasiveness. In light of the model predictions, we analyze EMT-inflammation-associated data from The Cancer Genome Atlas, and find that association with EMT worsens invasion-free survival probabilities. This result supports the predictions of the model, and leads to the identification of genes that influence outcomes in bladder and uterine cancer, including FGF pathway members. These results suggest new means to delay disease progression, and demonstrate the importance of studying cancer-immune interactions in light of EMT.
  5. Abstract

    Extracellular matrix (ECM) proteins, and most prominently, fibronectin (Fn), are routinely used in the form of adsorbed pre‐coatings in an attempt to create a cell‐supporting environment in both two‐ and three‐dimensional cell culture systems. However, these protein coatings are typically deposited in a form which is structurally and functionally distinct from the ECM‐constituting fibrillar protein networks naturally deposited by cells. Here, the cell‐free and scalable synthesis of freely suspended and mechanically robust three‐dimensional (3D) networks of fibrillar fibronectin (fFn) supported by tessellated polymer scaffolds is reported. Hydrodynamically induced Fn fibrillogenesis at the three‐phase contact line between air, an Fn solution, and a tessellated scaffold microstructure yields extended protein networks. Importantly, engineered fFn networks promote cell invasion and proliferation, enable in vitro expansion of primary cancer cells, and induce an epithelial‐to‐mesenchymal transition in cancer cells. Engineered fFn networks support the formation of multicellular cancer structures cells from plural effusions of cancer patients. With further work, engineered fFn networks can have a transformative impact on fundamental cell studies, precision medicine, pharmaceutical testing, and pre‐clinical diagnostics.