skip to main content


Title: Using population receptive field models to elucidate spatial integration in high-level visual cortex
While spatial information and biases have been consistently reported in high-level face regions, the functional contribution of this information toward face recognition behavior is unclear. Here, we propose that spatial integration of information plays a critical role in a hallmark phenomenon of face perception: holistic processing, or the tendency to process all features of a face concurrently rather than independently. We sought to gain insight into the neural basis of face recognition behavior by using a voxelwise encoding model of spatial selectivity to characterize the human face network using both typical face stimuli, and stimuli thought to disrupt normal face perception. We mapped population receptive fields (pRFs) using 3T fMRI in 6 participants using upright as well as inverted faces, which are thought to disrupt holistic processing. Compared to upright faces, inverted faces yielded substantial differences in measured pRF size, position, and amplitude. Further, these differences increased in magnitude along the face network hierarchy, from IOG- to pFus- and mFus-faces. These data suggest that pRFs in high-level regions reflect complex stimulus- dependent neural computations that underlie variations in recognition performance.  more » « less
Award ID(s):
1756035
NSF-PAR ID:
10126992
Author(s) / Creator(s):
Date Published:
Journal Name:
2019 Conference on Cognitive Computational Neuroscience, 13-16 September 2019, Berlin, Germany
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Spatial processing by receptive fields is a core property of the visual system. However, it is unknown how spatial processing in high-level regions contributes to recognition behavior. As face inversion is thought to disrupt typical holistic processing of information in faces, we mapped population receptive fields (pRFs) with upright and inverted faces in the human visual system. Here we show that in face-selective regions, but not primary visual cortex, pRFs and overall visual field coverage are smaller and shifted downward in response to face inversion. From these measurements, we successfully predict the relative behavioral detriment of face inversion at different positions in the visual field. This correspondence between neural measurements and behavior demonstrates how spatial processing in face-selective regions may enable holistic perception. These results not only show that spatial processing in high-level visual regions is dynamically used towards recognition, but also suggest a powerful approach for bridging neural computations by receptive fields to behavior. 
    more » « less
  2. Abstract

    Spatial processing by receptive fields is a core property of the visual system. However, it is unknown how spatial processing in high-level regions contributes to recognition behavior. As face inversion is thought to disrupt typical holistic processing of information in faces, we mapped population receptive fields (pRFs) with upright and inverted faces in the human visual system. Here we show that in face-selective regions, but not primary visual cortex, pRFs and overall visual field coverage are smaller and shifted downward in response to face inversion. From these measurements, we successfully predict the relative behavioral detriment of face inversion at different positions in the visual field. This correspondence between neural measurements and behavior demonstrates how spatial processing in face-selective regions may enable holistic perception. These results not only show that spatial processing in high-level visual regions is dynamically used towards recognition, but also suggest a powerful approach for bridging neural computations by receptive fields to behavior.

     
    more » « less
  3. Holistic processing (HP) of faces refers to the obligatory, simultaneous processing of the parts and their relations, and it emerges over the course of development. HP is manifest in a decrement in the perception of inverted versus upright faces and a reduction in face processing ability when the relations between parts are perturbed. Here, adopting the HP framework for faces, we examined the developmental emergence of HP in another domain for which human adults have expertise, namely, visual word processing. Children, adolescents, and adults performed a lexical decision task and we used two established signatures of HP for faces: the advantage in perception of upright over inverted words and nonwords and the reduced sensitivity to increasing parts (word length). Relative to the other groups, children showed less of an advantage for upright versus inverted trials and lexical decision was more affected by increasing word length. Performance on these HP indices was strongly associated with age and with reading proficiency. Also, the emergence of HP for word perception was not simply a result of improved visual perception over the course of development as no group differences were observed on an object decision task. These results reveal the developmental emergence of HP for orthographic input, and reflect a further instance of experience-dependent tuning of visual perception. These results also add to existing findings on the commonalities of mechanisms of word and face recognition. 
    more » « less
  4. According to a classical view of face perception (Bruce and Young, 1986; Haxby et al., 2000), face identity and facial expression recognition are performed by separate neural substrates (ventral and lateral temporal face-selective regions, respectively). However, recent studies challenge this view, showing that expression valence can also be decoded from ventral regions (Skerry and Saxe, 2014; Li et al., 2019), and identity from lateral regions (Anzellotti and Caramazza, 2017). These findings could be reconciled with the classical view if regions specialized for one task (either identity or expression) contain a small amount of information for the other task (that enables above-chance decoding). In this case, we would expect representations in lateral regions to be more similar to representations in deep convolutional neural networks (DCNNs) trained to recognize facial expression than to representations in DCNNs trained to recognize face identity (the converse should hold for ventral regions). We tested this hypothesis by analyzing neural responses to faces varying in identity and expression. Representational dissimilarity matrices (RDMs) computed from human intracranial recordings (n= 11 adults; 7 females) were compared with RDMs from DCNNs trained to label either identity or expression. We found that RDMs from DCNNs trained to recognize identity correlated with intracranial recordings more strongly in all regions tested—even in regions classically hypothesized to be specialized for expression. These results deviate from the classical view, suggesting that face-selective ventral and lateral regions contribute to the representation of both identity and expression.

    SIGNIFICANCE STATEMENTPrevious work proposed that separate brain regions are specialized for the recognition of face identity and facial expression. However, identity and expression recognition mechanisms might share common brain regions instead. We tested these alternatives using deep neural networks and intracranial recordings from face-selective brain regions. Deep neural networks trained to recognize identity and networks trained to recognize expression learned representations that correlate with neural recordings. Identity-trained representations correlated with intracranial recordings more strongly in all regions tested, including regions hypothesized to be expression specialized in the classical hypothesis. These findings support the view that identity and expression recognition rely on common brain regions. This discovery may require reevaluation of the roles that the ventral and lateral neural pathways play in processing socially relevant stimuli.

     
    more » « less
  5. Abstract

    A central challenge in face perception research is to understand how neurons encode face identities. This challenge has not been met largely due to the lack of simultaneous access to the entire face processing neural network and the lack of a comprehensive multifaceted model capable of characterizing a large number of facial features. Here, we addressed this challenge by conducting in silico experiments using a pre-trained face recognition deep neural network (DNN) with a diverse array of stimuli. We identified a subset of DNN units selective to face identities, and these identity-selective units demonstrated generalized discriminability to novel faces. Visualization and manipulation of the network revealed the importance of identity-selective units in face recognition. Importantly, using our monkey and human single-neuron recordings, we directly compared the response of artificial units with real primate neurons to the same stimuli and found that artificial units shared a similar representation of facial features as primate neurons. We also observed a region-based feature coding mechanism in DNN units as in human neurons. Together, by directly linking between artificial and primate neural systems, our results shed light on how the primate brain performs face recognition tasks.

     
    more » « less