skip to main content


Title: Simultaneous Millimetre-wave and X-ray monitoring of the Seyfert galaxy NGC 7469
ABSTRACT

We report on daily monitoring of the Seyfert galaxy ngc 7469, around 95 and 143 GHz, with the iram (Institut de Radioastronomie Millimetrique) 30- m radio telescope, and with the Swift X-ray and UV/optical telescopes, over an overlapping period of 45 d. The source was observed on 36 d with iram, and the flux density in both mm bands was on average ∼10 mJy, but varied by $\pm 50{{\ \rm per\ cent}}$, and by up to a factor of 2 between days. The present iram variability parameters are consistent with earlier monitoring, which had only 18 data points. The X-ray light curve of ngc 7469 over the same period spans a factor of 5 in flux with small uncertainties. Similar variability in the mm band and in the X-rays lends support to the notion of both sources originating in the same physical component of the active galactic nucleus (AGN), likely the accretion disc corona. Simultaneous monitoring in eight UV/optical bands shows much less variability than the mm and X-rays, implying this light originates from a different AGN component, likely the accretion disc itself. We use a tentative 14-d lag of the X-ray light curve with respect to the 95 GHz light curve to speculate on coronal implications. More precise mm-band measurements of a sample of X-ray-variable AGN are needed, preferably also on time-scales of less than a day where X-rays vary dramatically, in order to properly test the physical connection between the two bands.

 
more » « less
NSF-PAR ID:
10127149
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
491
Issue:
3
ISSN:
0035-8711
Page Range / eLocation ID:
p. 3523-3534
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT

    We present the results of photometric and spectroscopic monitoring campaigns of the changing look AGN NGC 2617 carried out from 2016 until 2022 and covering the wavelength range from the X-ray to the near-IR. The facilities included the telescopes of the SAI MSU, MASTER Global Robotic Net, the 2.3-m WIRO telescope, Swift, and others. We found significant variability at all wavelengths and, specifically, in the intensities and profiles of the broad Balmer lines. We measured time delays of ∼6 d (∼8 d) in the responses of the Hβ (Hα) line to continuum variations. We found the X-ray variations to correlate well with the UV and optical (with a small time delay of a few days for longer wavelengths). The K-band lagged the B band by 14 ± 4 d during the last three seasons, which is significantly shorter than the delays reported previously by the 2016 and 2017–2019 campaigns. Near-IR variability arises from two different emission regions: the outer part of the accretion disc and a more distant dust component. The HK-band variability is governed primarily by dust. The Balmer decrement of the broad-line components is inversely correlated with the UV flux. The change of the object’s type from Sy1 to Sy1.8 was recorded over a period of ∼8 yr. We interpret these changes as a combination of two factors: changes in the accretion rate and dust recovery along the line of sight.

     
    more » « less
  2. ABSTRACT Using a month-long X-ray light curve from RXTE/PCA and 1.5 month-long UV continuum light curves from IUE spectra in 1220–1970 Å, we performed a detailed time-lag study of the Seyfert 1 galaxy NGC 7469. Our cross-correlation analysis confirms previous results showing that the X-rays are delayed relative to the UV continuum at 1315 Å by 3.49 ± 0.22 d, which is possibly caused by either propagating fluctuation or variable Comptonization. However, if variations slower than 5 d are removed from the X-ray light curve, the UV variations then lag behind the X-ray variations by 0.37 ± 0.14 d, consistent with reprocessing of the X-rays by a surrounding accretion disc. A very similar reverberation delay is observed between Swift/XRT X-ray and Swift/UVOT UVW2, U light curves. Continuum light curves extracted from the Swift/GRISM spectra show delays with respect to X-rays consistent with reverberation. Separating the UV continuum variations faster and slower than 5 d, the slow variations at 1825 Å lag those at 1315 Å by 0.29 ± 0.06 d, while the fast variations are coincident (0.04 ± 0.12 d). The UV/optical continuum reverberation lag from IUE, Swift, and other optical telescopes at different wavelengths are consistent with the relationship: τ ∝ λ4/3, predicted for the standard accretion disc theory while the best-fitting X-ray delay from RXTE and Swift/XRT shows a negative X-ray offset of ∼0.38 d from the standard disc delay prediction. 
    more » « less
  3. Abstract

    The AGN STORM 2 campaign is a large, multiwavelength reverberation mapping project designed to trace out the structure of Mrk 817 from the inner accretion disk to the broad emission line region and out to the dusty torus. As part of this campaign, Swift performed daily monitoring of Mrk 817 for approximately 15 months, obtaining observations in X-rays and six UV/optical filters. The X-ray monitoring shows that Mrk 817 was in a significantly fainter state than in previous observations, with only a brief flare where it reached prior flux levels. The X-ray spectrum is heavily obscured. The UV/optical light curves show significant variability throughout the campaign and are well correlated with one another, but uncorrelated with the X-rays. Combining the Swift UV/optical light curves with Hubble Space Telescope UV continuum light curves, we measure interband continuum lags,τ(λ), that increase with increasing wavelength roughly followingτ(λ) ∝λ4/3, the dependence expected for a geometrically thin, optically thick, centrally illuminated disk. Modeling of the light curves reveals a period at the beginning of the campaign where the response of the continuum is suppressed compared to later in the light curve—the light curves are not simple shifted and scaled versions of each other. The interval of suppressed response corresponds to a period of high UV line and X-ray absorption, and reduced emission line variability amplitudes. We suggest that this indicates a significant contribution to the continuum from the broad-line region gas that sees an absorbed ionizing continuum.

     
    more » « less
  4. ABSTRACT

    Radio variability in some radio-quiet (RQ) active galactic nuclei suggests emission from regions close to the central engine, possibly the outer accretion disc corona. If the origins of the radio and the X-ray emission are physically related, their emission may be temporarily correlated, possibly with some time delays. We present the results of quasi-simultaneous radio and X-ray monitoring of three RQ Seyfert galaxies, Mrk 110, Mrk 766, and NGC 4593, carried out with the Very Large Array at 8.5 GHz over a period of about 300 d, and with the Rossi X-ray Timing Explorer at 2–10 keV over a period of about 2000 d. The radio core variability is likely detected in the highest resolution (A configuration) observations of Mrk 110 and NGC 4593, with a fractional variability amplitude of 6.3 per cent and 9.5 per cent, respectively. A cross-correlation analysis suggests an apparently strong (Pearson r = −0.89) and highly significant correlation (p = 1 × 10−6) in Mrk 110, with the radio lagging the X-ray by 56 d. However, a further analysis of the r values distribution for physically unrelated long time delays reveals that this correlation is not significant. This occurs since the Pearson correlation assumes white noise, while both the X-ray and the radio light curves follow red noise, which dramatically increases the chance, by a factor of ∼103, to get extremely high r values in uncorrelated data sets. A significantly longer radio monitoring with a higher sampling rate, preferably with a high-resolution fixed radio array, is required in order to reliably detect a delay.

     
    more » « less
  5. Abstract

    Active galactic nuclei (AGN) light curves observed with different wave bands show that the variability in longer wavelength bands lags the variability in shorter wavelength bands. Measuring these lags, or reverberation mapping, is used to measure the radial temperature profile and extent of AGN disks, typically with a reprocessing model that assumes X-rays are the main driver of the variability in other wavelength bands. To demonstrate how this reprocessing works with realistic accretion disk structures, we use 3D local shearing box multifrequency radiation magnetohydrodynamic simulations to model the UV-emitting region of an AGN disk, which is unstable to the magnetorotational instability and convection. At the same time, we inject hard X-rays (>1 keV) into the simulation box to study the effects of X-ray irradiation on the local properties of the turbulence and the resulting variability of the emitted UV light curve. We find that disk turbulence is sufficient to drive intrinsic variability in emitted UV light curves and that a damped random walk model is a good fit to this UV light curve for timescales >5 days. Meanwhile, X-ray irradiation has negligible impact on the power spectrum of the emitted UV light curve. Furthermore, the injected X-ray and emitted UV light curves are only correlated if there is X-ray variability on timescales >1 day, in which case we find a correlation coefficientr= 0.34. These results suggest that if the opacity for hard X-rays is scattering dominated as in the standard disk model, hard X-rays are not the main driver of reverberation signals.

     
    more » « less