skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Cross-sectional refractive-index variations in fiber Bragg gratings measured by quantitative phase imaging
Unexpected micrometer-scale patterns in the induced refractive index of various commercial fiber Bragg gratings (FBGs) are observed in the cross-sectional fiber directions, which are in addition to the expected periodic variations along the fiber axis. These measurements were made using 3D tomographic deconvolution phase microscopy, a type of quantitative phase imaging. The cross-sectional patterns observed are shown to exhibit a variety of appearances, including fringes normal to the fiber axis and radial blades, the details apparently depending on the FBG writing method.  more » « less
Award ID(s):
1915971
PAR ID:
10127414
Author(s) / Creator(s):
; ;
Publisher / Repository:
Optical Society of America
Date Published:
Journal Name:
Optics Letters
Volume:
45
Issue:
1
ISSN:
0146-9592; OPLEDP
Format(s):
Medium: X Size: Article No. 53
Size(s):
Article No. 53
Sponsoring Org:
National Science Foundation
More Like this
  1. The structural control of the monofilament fiber cross‐sectional architecture is a well‐established method for imparting its active functionality. Resulting from a thermal draw, the fiber device, until recently, is expected to be a cross‐sectionally scaled‐down and axially scaled‐up replica of its preform. However, thermal draw is a melt‐shaping process in which the preform is heated to a viscous liquid to be scaled into a fiber. Thus, it is prone to capillary instabilities on the interfaces between preform cladding and materials it encapsulates, distorting the fiber‐embedded architecture and complicating preform‐to‐fiber geometry translation. Traditionally, capillary instabilities are suppressed by performing the draw at a high‐viscosity, large‐feature‐size regime, such that the scaling of the preform into the fiber happens faster than a pronounced instability can develop. It is discovered recently that highly nonlinear, at times even chaotic capillary instabilities, in some fluid dynamic regimes, become predictable and thus engineerable. Driven by ever‐growing demand for enhancing the fiber‐device functionality, piggybacking on a capillary instability, instead of suppressing it, establishes itself as a new material processing strategy to achieve fiber‐embedded systems with user‐engineered architecture in all 3D, including the axial. Considering this development, the notable emerging methodologies are cross‐compared for designing 3D fiber‐embedded architectures. 
    more » « less
  2. Selection for increased muscle mass in domestic turkeys has resulted in muscles twice the size of those found in wild turkeys. This study characterizes muscle structural changes as well as functional differences in muscle performance associated with selection for increased muscle mass. We compared peak isometric force production, whole muscle and individual fiber cross-sectional area (CSA), connective tissue collagen concentration and structure of the lateral gastrocnemius (LG) muscle in wild and adult domestic turkeys. We also explored changes with age between juvenile and adult domestic turkeys. We found that the domestic turkey’s LG muscle can produce the same force per cross-sectional area as a wild turkey; however, due to scaling, domestic adults produce less force per unit body mass. Domestic turkey muscle fibers were slightly smaller in CSA (3802 ± 2223 μm2) than those of the wild turkey (4014 ± 1831 μm2, p = 0.013), indicating that the absolutely larger domestic turkey muscles are a result of an increased number of smaller fibers. Collagen concentration in domestic turkey muscle (4.19 ± 1.58 μg hydroxyproline/mg muscle) was significantly lower than in the wild turkeys (6.23 ± 0.63 μg/mg, p = 0.0275), with visible differences in endomysium texture, observed via scanning electron microscopy. Selection for increased muscle mass has altered the structure of the LG muscle; however, scaling likely contributes more to hind limb functional differences observed in the domestic turkey. 
    more » « less
  3. In this paper, we investigate the design of pennate topology fluidic artificial muscle bundles under spatial and operating constraints. Soft fluidic actuators are of great interest to roboticists and engineers due to their potential for inherent compliance and safe human-robot interaction. McKibben fluidic artificial muscles (FAMs) are soft fluidic actuators that are especially attractive due to their high force-to-weight ratio, inherent flexibility, relatively inexpensive construction, and muscle-like force-contraction behavior. Observations of natural muscles of equivalent cross-sectional area have indicated that muscles with a pennate fiber configuration can achieve higher output forces as compared to the parallel configuration due to larger physiological cross-sectional area (PCSA). However, this is not universally true because the contraction and rotation behavior of individual actuator units (fibers) are both key factors contributing to situations where bipennate muscle configurations are advantageous as compared to parallel muscle configurations. This paper analytically explores a design case for pennate topology artificial muscle bundles that maximize fiber radius. The findings can provide insights on optimizing artificial muscle topologies under spatial constraints. Furthermore, the study can be extended to evaluate muscle topology implications on work capacity and efficiency for tracking a desired dynamic motion. 
    more » « less
  4. This study assesses physical and chemical properties of fiber reinforced polymer (FRP) composite materials aged in Alaska’s subarctic climate. Carbon FRP (CFRP) and glass FRP (GFRP) samples were collected in 2019 from the exterior and interior of Ted Stevens International Airport (TSIA, retrofitted in 2008) and McKinley Tower (MKT, retrofitted in 2004). Differential scanning calorimetry (DSC) was used to measure glass transition temperature (Tg) and physical aging, FTIR and Raman spectroscopy were used to investigate potential chemical degradation and degree of cure, and scanning electron microscopy (SEM) to evaluate cross-sectional microstructure, respectively. The results indicate that exposure to the subarctic climate had minimal effect on the composites’ and chemical properties. The variability in fiber content at MKT and thermal properties at TSIA suggest there were likely some inconsistencies in the FRP installation that may affect load-carrying capacity. Furthermore, some microcracks were observed in the FRP retrofits which may have resulted from a combination of poor fiber impregnation and thermal cycling. 
    more » « less
  5. River bathymetry is needed to accurately simulate river hydrodynamics. River bathymetric data are typically collected through boat-mounted single- or multi-beam echosounder surveys. Detailed bathymetric data from multibeam surveys may exceed the requirements of standard river hydraulic models (1D and 2D). Compared to data-intensive but expensive multibeam surveys, single-beam surveys are cost-effective. Single-beam surveys can sufficiently inform river simulations when coupled with specific preprocessing and interpolation techniques. This study contrasts two survey patterns, including the commonly used but under-studied zigzag surveys, against the traditional cross-sectional surveys. Linear and anisotropic Kriging interpolations, two widely used methods, are applied to construct bathymetry mesh from different survey configurations. Results from this study highlight efficient survey configurations for both cross-sectional and zigzag patterns, balancing accuracy and cost. Notably, zigzag surveys approach the efficacy of cross-sectional surveys when spaced below a certain threshold, but Kriging interpolation shows diminished performance with sparse zigzag surveys. The findings from this study bridge gaps in previous research by offering nuanced comparisons between survey configurations and interpolations. This study offers a comparative analysis to guide more effective planning and utilization of single-beam surveys, without advocating for specific survey patterns or interpolation techniques. 
    more » « less