skip to main content


Title: Subaru High-z Exploration of Low-Luminosity Quasars (SHELLQs). VIII. A less biased view of the early co-evolution of black holes and host galaxies
Abstract

We present ALMA [C ii] line and far-infrared (FIR) continuum observations of three $z \gt 6$ low-luminosity quasars ($M_{\rm 1450} \gt -25$ mag) discovered by our Subaru Hyper Suprime-Cam (HSC) survey. The [C ii] line was detected in all three targets with luminosities of $(2.4\mbox{--}9.5) \times 10^8\, L_{\odot }$, about one order of magnitude smaller than optically luminous ($M_{\rm 1450} \lesssim -25$ mag) quasars. The FIR continuum luminosities range from $\lt 9 \times 10^{10}\, L_{\odot }$ (3 $\sigma$ limit) to ${\sim } 2 \times 10^{12}\, L_{\odot }$, indicating a wide range in star formation rates in these galaxies. Most of the HSC quasars studied thus far show [C ii]/ FIR luminosity ratios similar to local star-forming galaxies. Using the [C ii]-based dynamical mass ($M_{\rm dyn}$) as a surrogate for bulge stellar mass ($M_{\rm\, bulge}$), we find that a significant fraction of low-luminosity quasars are located on or even below the local $M_{\rm\, BH}$–$M_{\rm\, bulge}$ relation, particularly at the massive end of the galaxy mass distribution. In contrast, previous studies of optically luminous quasars have found that black holes are overmassive relative to the local relation. Given the low luminosities of our targets, we are exploring the nature of the early co-evolution of supermassive black holes and their hosts in a less biased way. Almost all of the quasars presented in this work are growing their black hole mass at a much higher pace at $z \sim 6$ than the parallel growth model, in which supermassive black holes and their hosts grow simultaneously to match the local $M_{\rm\, BH}$–$M_{\rm\, bulge}$ relation at all redshifts. As the low-luminosity quasars appear to realize the local co-evolutionary relation even at $z \sim 6$, they should have experienced vigorous starbursts prior to the currently observed quasar phase to catch up with the relation.

 
more » « less
NSF-PAR ID:
10127415
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  more » ;  ;  ;  ;  ;  ;  ;   « less
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Publications of the Astronomical Society of Japan
Volume:
71
Issue:
6
ISSN:
0004-6264
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT We study the demographics of z ∼ 6 broad-line quasars in the black hole (BH) mass–luminosity plane using a sample of more than 100 quasars at 5.7 < z < 6.5. These quasars have well-quantified selection functions and nearly one-third of them also have virial BH masses estimated from near-IR spectroscopy. We use forward modelling of parametrized intrinsic distributions of BH masses and Eddington ratios, and account for the sample flux limits and measurement uncertainties of the BH masses and luminosities. We find significant differences between the intrinsic and observed distributions of the quantities due to measurement uncertainties and sample flux limits. There is also marginal evidence that the virial BH masses are susceptible to a positive luminosity-dependent bias (BH mass is overestimated when luminosity is above the average), and that the mean Eddington ratio increases with BH mass. Our models provide reliable constraints on the z ∼ 6 BH mass function at $M_{\rm BH}\gt 10^{8.5}\, M_\odot$, with a median 1σ uncertainty of ∼0.5 dex in abundance. The intrinsic Eddington ratio distribution of $M_{\rm BH}\gt 10^{8.5}\, M_\odot$ quasars can be approximated by a mass-dependent Schechter model, with a broad peak around log (Lbol/LEdd) ∼ −0.9. We also find that, at 4.5 ≲ z ≲ 6, the number densities of more massive BHs tend to decline more rapidly with increasing redshift, contrary to the trend at 2.5 ≲ z ≲ 4.5 reported previously. 
    more » « less
  2. ABSTRACT

    While the first “seeds” of supermassive black holes (BH) can range from $\sim 10^2-10^6 \rm ~{\rm M}_{\odot }$, the lowest mass seeds ($\lesssim 10^3~\rm {\rm M}_{\odot }$) are inaccessible to most cosmological simulations due to resolution limitations. We present our new BRAHMA simulations that use a novel flexible seeding approach to predict the $z\ge 7$ BH populations for low-mass seeds. We ran two types of boxes that model $\sim 10^3~\rm {\rm M}_{\odot }$ seeds using two distinct but mutually consistent seeding prescriptions at different simulation resolutions. First, we have the highest resolution $[9~\mathrm{Mpc}]^3$ (BRAHMA-9-D3) boxes that directly resolve $\sim 10^3~\rm {\rm M}_{\odot }$ seeds and place them within haloes with dense, metal-poor gas. Second, we have lower resolution, larger volume $[18~\mathrm{Mpc}]^3$ (BRAHMA-18-E4), and $\sim [36~\mathrm{Mpc}]^3$ (BRAHMA-36-E5) boxes that seed their smallest resolvable $\sim 10^4~\&~10^5~\mathrm{{\rm M}_{\odot }}$ BH descendants using new stochastic seeding prescriptions calibrated using BRAHMA-9-D3. The three boxes together probe key BH observables between $\sim 10^3\,\mathrm{ and}\,10^7~\rm {\rm M}_{\odot }$. The active galactic nuclei (AGN) luminosity function variations are small (factors of $\sim 2-3$) at the anticipated detection limits of potential future X-ray facilities ($\sim 10^{43}~ \mathrm{ergs~s^{-1}}$ at $z\sim 7$). Our simulations predict BHs $\sim 10-100$ times heavier than the local $M_*$ versus $M_{\mathrm{ bh}}$ relations, consistent with several JWST-detected AGN. For different seed models, our simulations merge binaries at $\sim 1-15~\mathrm{kpc}$, with rates of $\sim 200-2000$ yr−1 for $\gtrsim 10^3~\rm {\rm M}_{\odot }$ BHs, $\sim 6-60$ yr−1 for $\gtrsim 10^4~\rm {\rm M}_{\odot }$ BHs, and up to $\sim 10$ yr−1 amongst $\gtrsim 10^5~\rm {\rm M}_{\odot }$ BHs. These results suggest that Laser Interferometer Space Antenna mission has promising prospects for constraining seed models.

     
    more » « less
  3. null (Ed.)
    ABSTRACT The past decade has seen significant progress in understanding galaxy formation and evolution using large-scale cosmological simulations. While these simulations produce galaxies in overall good agreement with observations, they employ different sub-grid models for galaxies and supermassive black holes (BHs). We investigate the impact of the sub-grid models on the BH mass properties of the Illustris, TNG100, TNG300, Horizon-AGN, EAGLE, and SIMBA simulations, focusing on the MBH − M⋆ relation and the BH mass function. All simulations predict tight MBH − M⋆ relations, and struggle to produce BHs of $M_{\rm BH}\leqslant 10^{7.5}\, \rm M_{\odot }$ in galaxies of $M_{\star }\sim 10^{10.5}\!-\!10^{11.5}\, \rm M_{\odot }$. While the time evolution of the mean MBH − M⋆ relation is mild ($\rm \Delta M_{\rm BH}\leqslant 1\, dex$ for 0 $\leqslant z \leqslant$ 5) for all the simulations, its linearity (shape) and normalization varies from simulation to simulation. The strength of SN feedback has a large impact on the linearity and time evolution for $M_{\star }\leqslant 10^{10.5}\, \rm M_{\odot }$. We find that the low-mass end is a good discriminant of the simulation models, and highlights the need for new observational constraints. At the high-mass end, strong AGN feedback can suppress the time evolution of the relation normalization. Compared with observations of the local Universe, we find an excess of BHs with $M_{\rm BH}\geqslant 10^{9}\, \rm M_{\odot }$ in most of the simulations. The BH mass function is dominated by efficiently accreting BHs ($\log _{10}\, f_{\rm Edd}\geqslant -2$) at high redshifts, and transitions progressively from the high-mass to the low-mass end to be governed by inactive BHs. The transition time and the contribution of active BHs are different among the simulations, and can be used to evaluate models against observations. 
    more » « less
  4. Abstract We report the discovery of a bright ( $g = 14.5$ mag (AB), $K = 11.9$ mag (Vega)) quasar at redshift $z=0.83$ — the optically brightest (unbeamed) quasar at $z>0.4$ . SMSS J114447.77-430859.3, at a Galactic latitude of $b=+18.1^{\circ}$ , was identified by its optical colours from the SkyMapper Southern Survey (SMSS) during a search for symbiotic binary stars. Optical and near-infrared spectroscopy reveals broad Mg ii , H $\unicode{x03B2}$ , H $\unicode{x03B1}$ , and Pa $\unicode{x03B2}$ emission lines, from which we measure a black hole mass of $\log_{10}\! (M_{\mathrm{BH}}/\mathrm{M}_{\odot}) = 9.4 \pm 0.5$ . With its high luminosity, $L_{\mathrm{bol}} = (4.7\pm1.0)\times10^{47}\,\mathrm{erg\,s}^{-1}$ or $M_{i}(z=2) = -29.74$ mag (AB), we estimate an Eddington ratio of $\approx1.4$ . As the most luminous quasar known over the last ${\sim}$ 9 Gyr of cosmic history, having a luminosity $8\times$ greater than 3C 273, the source offers a range of potential follow-up opportunities. 
    more » « less
  5. ABSTRACT

    We present 10 main-sequence ALPINE galaxies (log (M/M⊙) = 9.2−11.1 and ${\rm SFR}=23-190\, {\rm M_{\odot }\, yr^{-1}}$) at z ∼ 4.5 with optical [O ii] measurements from Keck/MOSFIRE spectroscopy and Subaru/MOIRCS narrow-band imaging. This is the largest such multiwavelength sample at these redshifts, combining various measurements in the ultraviolet, optical, and far-infrared including [C ii]158 $\mu$m line emission and dust continuum from ALMA and H α emission from Spitzer photometry. For the first time, this unique sample allows us to analyse the relation between [O ii] and total star-formation rate (SFR) and the interstellar medium (ISM) properties via [O ii]/[C ii] and [O ii]/H α luminosity ratios at z ∼ 4.5. The [O ii]−SFR relation at z ∼ 4.5 cannot be described using standard local descriptions, but is consistent with a metal-dependent relation assuming metallicities around $50{{\ \rm per\ cent}}$ solar. To explain the measured dust-corrected luminosity ratios of $\log (L_{\rm [OII]}/L_{\rm [CII]}) \sim 0.98^{+0.21}_{-0.22}$ and $\log (L_{\rm [OII]}/L_{\rm H\alpha }) \sim -0.22^{+0.13}_{-0.15}$ for our sample, ionization parameters log (U) < −2 and electron densities $\log (\rm n_e / {\rm [cm^{-3}]}) \sim 2.5-3$ are required. The former is consistent with galaxies at z ∼ 2−3, however lower than at z > 6. The latter may be slightly higher than expected given the galaxies’ specific SFR. The analysis of this pilot sample suggests that typical log (M/M⊙) > 9 galaxies at z ∼ 4.5 to have broadly similar ISM properties as their descendants at z ∼ 2 and suggest a strong evolution of ISM properties since the epoch of reionization at z > 6.

     
    more » « less