skip to main content


Title: Lead‐Free Bi 0.5 (Na 0.78 K 0.22 )TiO 3 Nanoparticle Filler–Elastomeric Composite Films for Paper‐Based Flexible Power Generators
Abstract

Key solutions for material selection, processing, and performance of environmentally friendly high‐power generators are addressed. High voltage and high power generation of flexible devices using piezoelectric Bi0.5(Na0.78K0.22)TiO3nanoparticle filler–polydimethylsiloxane (PDMS) elastomeric matrix for a lead‐free piezoelectric composite film on a cellulose paper substrate is demonstrated. To elucidate the principle of power generation by the piezoelectric composite configuration, the dielectric and piezoelectric characteristics of the composite film are investigated and the results are compared with those of theoretical modeling. The paper‐based composite generator produces a large output voltage of ≈100 V and an average current of ≈20 µA (max. ≈30 µA) through tapping stimulation, which is a record‐high performance compared to previously reported flexible lead‐free piezoelectric composite energy harvesters. Moreover, a triboelectric‐hybridized piezoelectric composite device using a micro‐patterned PDMS shows a much higher output voltage of ≈250 V and output power of ≈0.5 mW, which drives 300 light‐emitting diodes. These results prove that a new class of paper‐based and lead‐free energy harvesting device provides a strong possibility for enlarging the functionality and the capability of high‐power scavengers in flexible and wearable electronics such as sensors and medical devices.

 
more » « less
NSF-PAR ID:
10127495
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Electronic Materials
Volume:
6
Issue:
2
ISSN:
2199-160X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    In the past two decades, mechanical energy harvesting technologies have been developed in various ways to support or power small‐scale electronics. Nevertheless, the strategy for enhancing current and charge performance of flexible piezoelectric energy harvesters using a simple and cost‐effective process is still a challenging issue. Herein, a 1D–3D (1‐3) fully piezoelectric nanocomposite is developed using perovskite BaTiO3(BT) nanowire (NW)‐employed poly(vinylidene fluoride‐co‐trifluoroethylene) (P(VDF‐TrFE)) for a high‐performance hybrid nanocomposite generator (hNCG) device. The harvested output of the flexible hNCG reaches up to ≈14 V and ≈4 µA, which is higher than the current levels of even previous piezoceramic film‐based flexible energy harvesters. Finite element analysis method simulations study that the outstanding performance of hNCG devices attributes to not only the piezoelectric synergy of well‐controlled BT NWs and within P(VDF‐TrFE) matrix, but also the effective stress transferability of piezopolymer. As a proof of concept, the flexible hNCG is directly attached to a hand to scavenge energy using a human motion in various biomechanical frequencies for self‐powered wearable patch device applications. This research can pave the way for a new approach to high‐performance wearable and biocompatible self‐sufficient electronics.

     
    more » « less
  2. Abstract

    Converting mechanical energy from either the ambient environment or the human body motions to the useful electrical energy will revolutionize power solutions for flexible electronics. Here, a hybrid energy harvesting strategy is reported, which combines porous polymeric piezoelectric film with an electrostatic layer as an integration for converting the mechanical energy into electrical energy. The piezoelectric materials through engineered microstructures are developed to enhance energy generation due to the higher compressibility and larger surface contact area. The electrostatic effect from the charged layer further contributes to the generation of electrical charges. By directly coating the stretchable carbon nanotubes onto the elastomers, more intimate integration of the hybrid energy harvesters enables the designs for complex electronics. Such flexible hybrid piezoelectric‐electrostatic device exhibits superior energy harvesting performance with a voltage output of 1.95 V, which improves 30% and 100% compared to the electrostatic and piezoelectric alone device, respectively. Experiments are also performed to demonstrate the implementation of the hybrid device's energy conversion to power small electronics and recognition of different body motions. Such hybrid strategy provides a new solution toward future energy revolution for flexible electronics.

     
    more » « less
  3. Abstract

    Self‐sustainable energy generation represents a new frontier to significantly extend the lifetime and effectiveness of implantable biomedical devices. In this work, a piezoelectric energy harvester design is employed to utilize the bending of the lead of a cardiac pacemaker or defibrillator for generating electrical energy with minimal risk of interfering with cardiovascular functions. The proposed energy harvester combines flexible porous polyvinylidene fluoride–trifluoroethylene thin film with a buckled beam array design for potentially harvesting energy from cardiac motion. Systematic in vitro experimental evaluations are performed by considering complex parameters in practical implementations. Under various mechanical inputs and boundary conditions, the maximum electrical output of this energy harvester yields an open circuit voltage (peak to peak) of 4.5 V and a short circuit current (peak to peak) of 200 nA, and that energy is sufficient to self‐power a typical pacemaker for 1 d. A peak power output of 49 nW is delivered at an optimal resistor load of 50 MΩ. The scalability of the design is also discussed, and the reported results demonstrate the energy harvester's capability of providing significant electrical energy directly from the motions of pacemaker leads, suggesting a paradigm for biomedical energy harvesting in vivo.

     
    more » « less
  4. Abstract

    Retinal electrical stimulation for people with neurodegenerative diseases has shown to be feasible for direct excitation of neurons as a means of restoring vision. In this work, a new electrical stimulation strategy is proposed using ultrasound‐driven wireless energy harvesting technology to convert acoustic energy to electricity through the piezoelectric effect. The design, fabrication, and performance of a millimeter‐scale flexible ultrasound patch that utilizes an environment‐friendly lead‐free piezocomposite are described. A modified dice‐and‐fill technique is used to manufacture the microstructure of the piezocomposite and to generate improved electrical and acoustic properties. The as‐developed device can be attached on a complex surface and be driven by ultrasound to produce adjustable electrical outputs, reaching a maximum output power of 45 mW cm−2. Potential applications for charging energy storage devices and powering commercial electronics using the device are demonstrated. The considerable current signals (e.g., current >72 µA and current density >9.2 nA µm−2) that are higher than the average thresholds of retinal stimulation are also obtained in the ex vivo experiment of an implanted environment, showing great potential to be integrated on implanted biomedical devices for electrical stimulation application.

     
    more » « less
  5. The traditional von Neumann architecture limits the increase in computing efficiency and results in massive power consumption in modern computers due to the separation of storage and processing units. The novel neuromorphic computation system, an in-memory computing architecture with low power consumption, is aimed to break the bottleneck and meet the needs of the next generation of artificial intelligence (AI) systems. Thus, it is urgent to find a memory technology to implement the neuromorphic computing nanosystem. Nowadays, the silicon-based flash memory dominates non-volatile memory market, however, it is facing challenging issues to achieve the requirements of future data storage device development due to the drawbacks, such as scaling issue, relatively slow operation speed, and high voltage for program/erase operations. The emerging resistive random-access memory (RRAM) has prompted extensive research as its simple two-terminal structure, including top electrode (TE) layer, bottom electrode (BE) layer, and an intermediate resistive switching (RS) layer. It can utilize a temporary and reversible dielectric breakdown to cause the RS phenomenon between the high resistance state (HRS) and the low resistance state (LRS). RRAM is expected to outperform conventional memory device with the advantages, notably its low-voltage operation, short programming time, great cyclic stability, and good scalability. Among the materials for RS layer, indium gallium zinc oxide (IGZO) has shown attractive prospects in abundance and high atomic diffusion property of oxygen atoms, transparency. Additionally, its electrical properties can be easily modulated by controlling the stoichiometric ratio of indium and gallium as well as oxygen potential in the sputter gas. Moreover, since the IGZO can be applied to both the thin-film transistor (TFT) channel and RS layer, it has a great potential for fully integrated transparent electronics application. In this work, we proposed amorphous transparent IGZO-based RRAMs and investigated switching behaviors of the memory cells prepared with different top electrodes. First, ITO was choosing to serve as both TE and BE to achieve high transmittance. A multi-target magnetron sputtering system was employed to deposit all three layers (TE, RS, BE layers) on glass substrate. I-V characteristics were evaluated by a semiconductor parameter analyzer, and the bipolar RS feature of our RRAM devices was demonstrated by typical butterfly curves. The optical transmission analysis was carried out via a UV-Vis spectrometer and the average transmittance was around 80% out of entire devices in the visible-light wavelength range, implying high transparency. We adjusted the oxygen partial pressure during the sputtering of IGZO to optimize the property because the oxygen vacancy concentration governs the RS performance. Electrode selection is crucial and can impact the performance of the whole device. Thus, Cu TE was chosen for our second type of device because the diffusion of Cu ions can be beneficial for the formation of the conductive filament (CF). A ~5 nm SiO 2 barrier layer was employed between TE and RS layers to confine the diffusion of Cu into the RS layer. At the same time, this SiO 2 inserting layer can provide an additional interfacial series resistance in the device to lower the off current, consequently, improve the on/off ratio and whole performance. Finally, an oxygen affinity metal Ti was selected as the TE for our third type of device because the concentration of the oxygen atoms can be shifted towards the Ti electrode, which provides an oxygengettering activity near the Ti metal. This process may in turn lead to the formation of a sub-stoichiometric region in the neighboring oxide that is believed to be the origin of better performance. In conclusion, the transparent amorphous IGZO-based RRAMs were established. To tune the property of RS layer, the sputtering conditions of RS were varied. To investigate the influence of TE selections on switching performance of RRAMs, we integrated a set of TE materials, and a barrier layer on IGZO-based RRAM and compared the switch characteristics. Our encouraging results clearly demonstrate that IGZO is a promising material in RRAM applications and breaking the bottleneck of current memory technologies. 
    more » « less