skip to main content


Title: Acceleration and escape processes of high-energy particles in turbulence inside hot accretion flows
Abstract

We investigate acceleration and propagation processes of high-energy particles inside hot accretion flows. The magnetorotational instability (MRI) creates turbulence inside accretion flows, which triggers magnetic reconnection and may produce non-thermal particles. They can be further accelerated stochastically by the turbulence. To probe the properties of such relativistic particles, we perform magnetohydrodynamic simulations to obtain the turbulent fields generated by the MRI, and calculate orbits of the high-energy particles using snapshot data of the MRI turbulence. We find that the particle acceleration is described by a diffusion phenomenon in energy space with a diffusion coefficient of the hard-sphere type: Dε ∝ ε2, where ε is the particle energy. Eddies in the largest scale of the turbulence play a dominant role in the acceleration process. On the other hand, the stochastic behaviour in configuration space is not usual diffusion but superdiffusion: the radial displacement increases with time faster than that in the normal diffusion. Also, the magnetic field configuration in the hot accretion flow creates outward bulk motion of high-energy particles. This bulk motion is more effective than the diffusive motion for higher energy particles. Our results imply that typical active galactic nuclei that host hot accretion flows can accelerate CRs up to ε ∼ 0.1−10 PeV.

 
more » « less
NSF-PAR ID:
10127575
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
485
Issue:
1
ISSN:
0035-8711
Page Range / eLocation ID:
p. 163-178
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Particles are accelerated to very high, non-thermal energies during explosive energy-release phenomena in space, solar, and astrophysical plasma environments. While it has been established that magnetic reconnection plays an important role in the dynamics of Earth’s magnetosphere, it remains unclear how magnetic reconnection can further explain particle acceleration to non-thermal energies. Here we review recent progress in our understanding of particle acceleration by magnetic reconnection in Earth’s magnetosphere. With improved resolutions, recent spacecraft missions have enabled detailed studies of particle acceleration at various structures such as the diffusion region, separatrix, jets, magnetic islands (flux ropes), and dipolarization front. With the guiding-center approximation of particle motion, many studies have discussed the relative importance of the parallel electric field as well as the Fermi and betatron effects. However, in order to fully understand the particle acceleration mechanism and further compare with particle acceleration in solar and astrophysical plasma environments, there is a need for further investigation of, for example, energy partition and the precise role of turbulence.

     
    more » « less
  2. ABSTRACT Turbulent high-energy astrophysical systems often feature asymmetric energy injection: for instance, Alfvén waves propagating from an accretion disc into its corona. Such systems are ‘imbalanced’: the energy fluxes parallel and antiparallel to the large-scale magnetic field are unequal. In the past, numerical studies of imbalanced turbulence have focused on the magnetohydrodynamic regime. In this study, we investigate externally driven imbalanced turbulence in a collision-less, ultrarelativistically hot, magnetized pair plasma using 3D particle-in-cell (PIC) simulations. We find that the injected electromagnetic momentum efficiently converts into plasma momentum, resulting in net motion along the background magnetic field with speeds up to a significant fraction of lightspeed. This discovery has important implications for the launching of accretion disc winds. We also find that although particle acceleration in imbalanced turbulence operates on a slower time-scale than in balanced turbulence, it ultimately produces a power-law energy distribution similar to balanced turbulence. Our results have ramifications for black hole accretion disc coronae, winds, and jets. 
    more » « less
  3. We investigate particle acceleration in an MHD-scale system of multiple current sheets by performing 2D and 3D MHD simulations combined with a test particle simulation. The system is unstable for the tearing-mode instability, and magnetic islands are produced by magnetic reconnection. Due to the interaction of magnetic islands, the system relaxes to a turbulent state. The 2D (3D) case both yield −5/3 (− 11/3 and −7/3) power-law spectra for magnetic and velocity fluctuations. Particles are efficiently energized by the generated turbulence, and form a power-law tail with an index of −2.2 and −4.2 in the energy distribution function for the 2D and 3D case, respectively. We find more energetic particles outside magnetic islands than inside. We observe super-diffusion in the 2D (∼ t 2.27 ) and 3D (∼ t 1.2 ) case in the energy space of energetic particles. 
    more » « less
  4. Abstract

    Galactic outflows from local starburst galaxies typically exhibit a layered geometry, with cool 104K flow sheathing a hotter 107K, cylindrically collimated, X-ray-emitting plasma. Here we argue that winds driven by energy injection in a ring-like geometry can produce this distinctive large-scale multiphase morphology. The ring configuration is motivated by the observation that massive young star clusters are often distributed in a ring at the host galaxy’s inner Lindblad resonance, where larger-scale spiral arm structure terminates. We present parameterized three-dimensional radiative hydrodynamical simulations that follow the emergence and dynamics of energy-driven hot winds from starburst rings. In this letter, we show that the flow shocks on itself within the inner ring hole, maintaining high 107K temperatures, while flows that emerge from the wind-driving ring unobstructed can undergo rapid bulk cooling down to 104K, producing a fast hot biconical outflow enclosed by a sheath of cooler nearly comoving material without ram pressure acceleration. The hot flow is collimated along the ring axis, even in the absence of pressure confinement from a galactic disk or magnetic fields. In the early stages of expansion, the emerging wind forms a bubble-like shape reminiscent of the Milky Way’s eROSITA and Fermi bubbles and can reach velocities usually associated with active-galactic-nucleus-driven winds. We discuss the physics of the ring configuration, the conditions for radiative bulk cooling, and the implications for future X-ray observations.

     
    more » « less
  5. Abstract

    In Earth’s foreshock, there are many foreshock transients that have core regions with low field strength, low density, high temperature, and bulk velocity variation. Through dynamic pressure perturbations, they can disturb the magnetosphere–ionosphere system. They can also accelerate particles contributing to particle acceleration at the bow shock. Recent Magnetospheric Multiscale (MMS) mission observations showed that inside the low field strength core region, there are usually kinetic‐scale magnetic holes with even lower field strength (<1 nT). However, their nature and effects are unknown. In this study, we used MMS observations to conduct case studies on these magnetic holes. We found that they could be subion‐scale current sheets without a magnetic normal component and guide field, driven by the motion of demagnetized electrons. These magnetic holes can also be subion‐scale flux ropes or magnetic helical structures with weak axial field. The low field strength inside them can be either driven by external expansion or electron mirror mode. Electrons inside them show flux depletion at 90° pitch angle resulting in an “electron hole” distribution. These magnetic holes can play a role in electron dynamics, wave excitation, and shaping the foreshock transient structures. Our detailed study of such features sheds light on the turbulent nature of foreshock transient cores.

     
    more » « less