skip to main content

Title: Acceleration and escape processes of high-energy particles in turbulence inside hot accretion flows

We investigate acceleration and propagation processes of high-energy particles inside hot accretion flows. The magnetorotational instability (MRI) creates turbulence inside accretion flows, which triggers magnetic reconnection and may produce non-thermal particles. They can be further accelerated stochastically by the turbulence. To probe the properties of such relativistic particles, we perform magnetohydrodynamic simulations to obtain the turbulent fields generated by the MRI, and calculate orbits of the high-energy particles using snapshot data of the MRI turbulence. We find that the particle acceleration is described by a diffusion phenomenon in energy space with a diffusion coefficient of the hard-sphere type: Dε ∝ ε2, where ε is the particle energy. Eddies in the largest scale of the turbulence play a dominant role in the acceleration process. On the other hand, the stochastic behaviour in configuration space is not usual diffusion but superdiffusion: the radial displacement increases with time faster than that in the normal diffusion. Also, the magnetic field configuration in the hot accretion flow creates outward bulk motion of high-energy particles. This bulk motion is more effective than the diffusive motion for higher energy particles. Our results imply that typical active galactic nuclei that host hot accretion flows can accelerate CRs up to more » ε ∼ 0.1−10 PeV.

« less
 ;  ;  
Publication Date:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Page Range or eLocation-ID:
p. 163-178
Oxford University Press
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT Turbulent high-energy astrophysical systems often feature asymmetric energy injection: for instance, Alfvén waves propagating from an accretion disc into its corona. Such systems are ‘imbalanced’: the energy fluxes parallel and antiparallel to the large-scale magnetic field are unequal. In the past, numerical studies of imbalanced turbulence have focused on the magnetohydrodynamic regime. In this study, we investigate externally driven imbalanced turbulence in a collision-less, ultrarelativistically hot, magnetized pair plasma using 3D particle-in-cell (PIC) simulations. We find that the injected electromagnetic momentum efficiently converts into plasma momentum, resulting in net motion along the background magnetic field with speeds up to a significant fraction of lightspeed. This discovery has important implications for the launching of accretion disc winds. We also find that although particle acceleration in imbalanced turbulence operates on a slower time-scale than in balanced turbulence, it ultimately produces a power-law energy distribution similar to balanced turbulence. Our results have ramifications for black hole accretion disc coronae, winds, and jets.
  2. We investigate particle acceleration in an MHD-scale system of multiple current sheets by performing 2D and 3D MHD simulations combined with a test particle simulation. The system is unstable for the tearing-mode instability, and magnetic islands are produced by magnetic reconnection. Due to the interaction of magnetic islands, the system relaxes to a turbulent state. The 2D (3D) case both yield −5/3 (− 11/3 and −7/3) power-law spectra for magnetic and velocity fluctuations. Particles are efficiently energized by the generated turbulence, and form a power-law tail with an index of −2.2 and −4.2 in the energy distribution function for the 2D and 3D case, respectively. We find more energetic particles outside magnetic islands than inside. We observe super-diffusion in the 2D (∼ t 2.27 ) and 3D (∼ t 1.2 ) case in the energy space of energetic particles.
  3. Abstract

    Galactic outflows from local starburst galaxies typically exhibit a layered geometry, with cool 104K flow sheathing a hotter 107K, cylindrically collimated, X-ray-emitting plasma. Here we argue that winds driven by energy injection in a ring-like geometry can produce this distinctive large-scale multiphase morphology. The ring configuration is motivated by the observation that massive young star clusters are often distributed in a ring at the host galaxy’s inner Lindblad resonance, where larger-scale spiral arm structure terminates. We present parameterized three-dimensional radiative hydrodynamical simulations that follow the emergence and dynamics of energy-driven hot winds from starburst rings. In this letter, we show that the flow shocks on itself within the inner ring hole, maintaining high 107K temperatures, while flows that emerge from the wind-driving ring unobstructed can undergo rapid bulk cooling down to 104K, producing a fast hot biconical outflow enclosed by a sheath of cooler nearly comoving material without ram pressure acceleration. The hot flow is collimated along the ring axis, even in the absence of pressure confinement from a galactic disk or magnetic fields. In the early stages of expansion, the emerging wind forms a bubble-like shape reminiscent of the Milky Way’s eROSITA and Fermi bubbles and can reachmore »velocities usually associated with active-galactic-nucleus-driven winds. We discuss the physics of the ring configuration, the conditions for radiative bulk cooling, and the implications for future X-ray observations.

    « less
  4. In collisional gas–solid flows, dense particle clusters are often observed that greatly affect the transport properties of the mixture. The characterisation and prediction of this phenomenon are challenging due to limited optical access, the wide range of scales involved and the interplay of different mechanisms. Here, we consider a laboratory setup in which particles fall against upward-moving air in a square vertical duct: a classic configuration in riser reactors. The use of non-cohesive, monodispersed, spherical particles and the ability to independently vary the solid volume fraction ( $\varPhi _V = 0.1\,\% - 0.8\,\%$ ) and the bulk airflow Reynolds number ( $Re_{bulk} = 300 - 1200$ ) allows us to isolate key elements of the multiphase dynamics, providing the first laboratory observation of cluster-induced turbulence. Above a threshold $\varPhi _V$ , the system exhibits intense fluctuations of concentration and velocity, as measured by high-speed imaging via a backlighting technique which returns optically depth-averaged fields. The space–time autocorrelations reveal dense and persistent mesoscale structures falling faster than the surrounding particles and trailing long wakes. These are shown to be the statistical footprints of visually observed clusters, mostly found in the vicinity of the walls. They are identified via a percolation analysis,more »tracked in time, and characterised in terms of size, shape, location and velocity. Larger clusters are denser, longer-lived and have greater descent velocity. At the present particle Stokes number, the threshold $\varPhi _V \sim 0.5$ % (largely independent from $Re_{bulk}$ ) is consistent with the view that clusters appear when the typical interval between successive collisions is shorter than the particle response time.« less
  5. Abstract

    The Universe is filled with a diffuse background of MeV gamma-rays and PeV neutrinos, whose origins are unknown. Here, we propose a scenario that can account for both backgrounds simultaneously. Low-luminosity active galactic nuclei have hot accretion flows where thermal electrons naturally emit soft gamma rays via Comptonization of their synchrotron photons. Protons there can be accelerated via turbulence or reconnection, producing high-energy neutrinos via hadronic interactions. We demonstrate that our model can reproduce the gamma-ray and neutrino data. Combined with a contribution by hot coronae in luminous active galactic nuclei, these accretion flows can explain the keV – MeV photon and TeV – PeV neutrino backgrounds. This scenario can account for the MeV background without non-thermal electrons, suggesting a higher transition energy from the thermal to nonthermal Universe than expected. Our model is consistent with X-ray data of nearby objects, and testable by future MeV gamma-ray and high-energy neutrino detectors.