Abstract Realistic computational simulations in different oceanic basins reveal prevalent prograde mean flows (in the direction of topographic Rossby wave propagation along isobaths; aka topostrophy) on topographic slopes in the deep ocean, consistent with the barotropic theory of eddy-driven mean flows. Attention is focused on the western Mediterranean Sea with strong currents and steep topography. These prograde mean currents induce an opposing bottom drag stress and thus a turbulent boundary layer mean flow in the downhill direction, evidenced by a near-bottom negative mean vertical velocity. The slope-normal profile of diapycnal buoyancy mixing results in downslope mean advection near the bottom (a tendency to locally increase the mean buoyancy) and upslope buoyancy mixing (a tendency to decrease buoyancy) with associated buoyancy fluxes across the mean isopycnal surfaces (diapycnal downwelling). In the upper part of the boundary layer and nearby interior, the diapycnal turbulent buoyancy flux divergence reverses sign (diapycnal upwelling), with upward Eulerian mean buoyancy advection across isopycnal surfaces. These near-slope tendencies abate with further distance from the boundary. An along-isobath mean momentum balance shows an advective acceleration and a bottom-drag retardation of the prograde flow. The eddy buoyancy advection is significant near the slope, and the associated eddy potential energy conversion is negative, consistent with mean vertical shear flow generation for the eddies. This cross-isobath flow structure differs from previous proposals, and a new one-dimensional model is constructed for a topostrophic, stratified, slope bottom boundary layer. The broader issue of the return pathways of the global thermohaline circulation remains open, but the abyssal slope region is likely to play a dominant role.
more »
« less
On Baroclinic Instability over Continental Shelves: Testing the Utility of Eady-Type Models
Abstract This study examines the utility of Eady-type theories as applied to understanding baroclinic instability in coastal flows where depth variations and bottom drag are important. The focus is on the effects of nongeostrophy, boundary dissipation, and bottom slope. The approach compares theoretically derived instability properties against numerical model calculations, for experiments designed to isolate the individual effects and justified to have Eady-like basic states. For the nongeostrophic effect, the theory of Stone (1966) is shown to give reasonable predictions for the most unstable growth rate and wavelength. It is also shown that the growing instability in a fully nonlinear model can be interpreted as boundary-trapped Rossby wave interactions—that is, wave phase locking and westward phase tilt allow waves to be mutually amplified. The analyses demonstrate that both the boundary dissipative and bottom slope effects can be represented by vertical velocities at the lower boundary of the unstable interior, via inducing Ekman pumping and slope-parallel flow, respectively, as proposed by the theories of Williams and Robinson (1974; referred to as the Eady–Ekman problem) and Blumsack and Gierasch (1972). The vertical velocities, characterized by a friction parameter and a slope ratio, modify the bottom wave and thus the scale selection. However, the theories have inherent quantitative limitations. Eady–Ekman neglects boundary layer responses that limit the increase of bottom stress, thereby overestimating the Ekman pumping and growth rate reduction at large drag. Blumsack and Gierasch’s (1972) model ignores slope-induced horizontal shear in the mean flow that tilts the eddies to favor converting energy back to the mean, thus having limited utility over steep slopes.
more »
« less
- PAR ID:
- 10127623
- Publisher / Repository:
- American Meteorological Society
- Date Published:
- Journal Name:
- Journal of Physical Oceanography
- Volume:
- 50
- Issue:
- 1
- ISSN:
- 0022-3670
- Page Range / eLocation ID:
- p. 3-33
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract. The Chukchi Slope Current is a westward-flowing currentalong the Chukchi slope, which carries Pacific-origin water from the Chukchishelf into the Canada Basin and helps set the regional hydrographicstructure and ecosystem. Using a set of experiments with an idealizedprimitive equation numerical model, we investigate the energetics of theslope current during the ice-covered period. Numerical calculations showthat the growth of surface eddies is suppressed by the ice friction, whileperturbations at mid-depths can grow into eddies, consistent with linearinstability analysis. However, because the ice stress is spatially variable,it is able to drive Ekman pumping to decrease the available potential energy(APE) and kinetic energy of both the mean flow and mesoscale eddies over avertical scale of 100 m, well outside the frictional Ekman layer. The rateat which the APE changes is determined by the vertical density flux, whichis negative as the ice-induced Ekman pumping advects lighter (denser) waterupward (downward). A scaling analysis shows that Ekman pumping will dominatethe release of APE for large-scale flows, but the effect of baroclinicinstability is also important when the horizontal scale of the mean flow isthe baroclinic deformation radius and the eddy velocity is comparable to themean flow velocity. Our numerical results highlight the importance of icefriction in the energetics of the slope current and eddies, and this may berelevant to other ice-covered regions.more » « less
-
Abstract A current along a sloping bottom gives rise to upwelling, or downwelling Ekman transport within the stratified bottom boundary layer (BBL), also known as the bottom Ekman layer. In 1D models of slope currents, geostrophic vertical shear resulting from horizontal buoyancy gradients within the BBL is predicted to eventually bring the bottom stress to zero, leading to a shutdown, or “arrest,” of the BBL. Using 3D ROMS simulations, we explore how the dynamics of buoyancy adjustment in a current‐ridge encounter problem differs from 1D and 2D temporal spin up problems. We show that in a downwelling BBL, the destruction of the ageostrophic BBL shear, and hence the bottom stress, is accomplished primarily by nonlinear straining effects during the initial topographic encounter. As the current advects along the ridge slopes, the BBL deepens and evolves toward thermal wind balance. The onset of negative potential vorticitymodes of instability and their subsequent dissipation partially offsets the reduction of the BBL dissipation during the ridge‐current interaction. On the upwelling side, although the bottom stress weakens substantially during the encounter, the BBL experiences a horizontal inflectional point instability and separates from the slopes before sustained along‐slope stress reduction can occur. In all our solutions, both the upwelling and downwelling BBLs are in a partially arrested state when the current separates from the ridge slope, characterized by a reduced, but non‐zero bottom stress on the slopes.more » « less
-
Three-phase (solid, melt, and gas) and two-phase (solid and melt) models of horizontal ribbon growth were compared to identify the significance of different gas effects. The boundary conditions at the melt–gas and solid–gas interfaces for two-phase simulations were obtained from decoupled simulations of the gas phase. The results showed that the gas shear stress strongly changes the flow and temperature fields and the position of the triple-phase line. Also, the gas pressure distribution determined the vertical position of the triple-phase line. In the absence of growth angle effects, the results of the two-phase model with specified convective heat transfer coefficient, shear stress, and pressure as boundary conditions along the gas phase interface closely matched that of the three-phase model. Even with non-zero growth angle effects, the two-phase model with all the boundary conditions agreed well with three-phase simulation results, despite increased deviations at higher pull speeds. Finally, the results indicated that gas-induced velocities are significant compared to the Marangoni and buoyancy velocities, which could lead to flow instabilities and the variations in solid shape as observed in HRG experiments.more » « less
-
null (Ed.)The release of available potential energy by growing baroclinic instability requires the slope of the eddy fluxes to be shallower than that of mean density surfaces, where the amount of energy released depends on both the flux angle and the distance of fluid parcel excursions against the background density gradient. The presence of a lateral potential vorticity (PV) gradient is known to affect the growth rate and energy release by baroclinic instability, but often makes the mathematics of formal linear stability analysis intractable. Here the effects of a lateral PV gradient on baroclinic growth are examined by considering its effects on the slope of the eddy fluxes. It is shown that the PV gradient systematically shifts the unstable modes toward higher wavenumbers and creates a cutoff to the instability at large scales, both of which steepen the eddy flux angle and limit the amount of energy released. This effect may contribute to the severe inhibition of baroclinic turbulence in systems dominated by barotropic jets, making them less likely to transition to turbulence-dominated flow regimes.more » « less
An official website of the United States government
