Abstract Coordination complexes of general formulatrans‐[MX2(R2ECH2CH2ER2)2] (MII=Ti, V, Cr, Mn; E=N or P; R=alkyl or aryl) are a cornerstone of coordination and organometallic chemistry. We investigate the electronic properties of two such complexes,trans‐[VCl2(tmeda)2] andtrans‐[VCl2(dmpe)2], which thus representtrans‐[MX2(R2ECH2CH2ER2)2] where M=V, X=Cl, R=Me and E=N (tmeda) and P (dmpe). These VIIcomplexes haveS=3/2 ground states, as expected for octahedral d3. Their tetragonal distortion leads to zero‐field splitting (zfs) that is modest in magnitude (D≈0.3 cm−1) relative to analogousS=1 TiIIand CrIIcomplexes. This parameter was determined from conventional EPR spectroscopy, but more effectively from high‐frequency and ‐field EPR (HFEPR) that determined the sign ofDas negative for the diamine complex, but positive for the diphosphine, which information had not been known for anytrans‐[VX2(R2ECH2CH2ER2)2] systems. The ligand‐field parameters oftrans‐[VCl2(tmeda)2] andtrans‐[VCl2(dmpe)2] are obtained using both classical theory andab initioquantum chemical theory. The results shed light not only on the electronic structure of VIIin this environment, but also on differences between N and P donor ligands, a key comparison in coordination chemistry. 
                        more » 
                        « less   
                    
                            
                            Formation and hydrolysis of gas-phase [UO 2 (R)] + : R═CH 3 , CH 2 CH 3 , CH═CH 2 , and C 6 H 5
                        
                    - Award ID(s):
- 1726824
- PAR ID:
- 10127642
- Date Published:
- Journal Name:
- Journal of Mass Spectrometry
- Volume:
- 54
- Issue:
- 9
- ISSN:
- 1076-5174
- Page Range / eLocation ID:
- 780 to 789
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    